LI Xin,ZHAO Qiaojing,WANG Jun,et al. Composition of soluble organic matter and its causes of No. 11 coal from Sangshuping Mine, Shaanxi Province[J]. Coal Science and Technology,2023,51(6):137−146
. DOI: 10.13199/j.cnki.cst.2021-1459Citation: |
LI Xin,ZHAO Qiaojing,WANG Jun,et al. Composition of soluble organic matter and its causes of No. 11 coal from Sangshuping Mine, Shaanxi Province[J]. Coal Science and Technology,2023,51(6):137−146 . DOI: 10.13199/j.cnki.cst.2021-1459 |
Eight samples of No.11 coal in Sangshuping Mine were used for organic geochemical study, Gas chromatography-mass spectrometry (GC-MS) and X-ray fluorescence spectrometry (XRF) were combined with the test results of proximate analysis, sulfur forms and random vitrinite reflectance, the organic matter sources and coal-forming environment of No.11 coal from the Sangshuping mine, Shaanxi Province were comprehensively analyzed. The results indicate that the total sulfur content of the coal sample is 3.29%, and the mean vitrinite oil-leaching reflectance is 2.01%, which is high-sulfur lean coal. The phase parameters of major elements indicate that the coal samples are mainly formed in reductive sedimentary environment. There are two types of carbon number distribution of n-alkanes in saturated hydrocarbon: the front peak type main carbon peak is C16, and the back peak type is main carbon C26; Combined with the distribution characteristics of ∑C22−/∑C23+、(C21+C22)/(C28+C29)、Pr/nC17、Ph/nC18 indicated that the parent material of organic matter come from aquatic organisms and higher plants. The OEP value was between 0.49 to 1.05,with an average value of 0.84, indicating that No.11 coal of Sangshuping has undergone different degrees of biodegradation. In the analysis of saturated hydrocarbon steroidal terpanes, the ratio ofw(Ts)/w(Tm) is between 0.83-1.21 andw(Ts)/[w(Ts)+w(Tm)] is between 0.45-0.55, indicating that the thermal evolution degree of coal sample is high. In the analysis of aromatic compounds, the methyl rearrangement of trimethylnaphthalene and the distribution characteristics of methyl phenanthrene index are correlated with the high thermal evolution degree of coal samples. The aromatic hydrocarbons were dominated by naphthalene, phenanthrene and biphenyl series, and the sulfur-containing compounds in the trifluorene series (oxygen-fluorene, sulfur-fluorene, fluorene) are obviously higher than the oxygen-containing compounds, which also indicates the coal-forming environment under higher salinity partial reduction conditions.
[1] |
张卫国,杨建业,车晓阳. 中国典型超高有机硫煤中矿物与元素特征[J]. 中国矿业大学学报,2017,46(4):877−887.
ZHANG Weiguo,YANG Jianye,CHE Xiaoyang. Mineral and elementcharacteristics of superhigh organic sulfur coal in China[J]. Journal of China University of Mining& Technology,2017,46(4):877−887.
|
[2] |
LIU J,YANG Z,YAN X,et al. Modes of occurrence of higly-elevated trace elements in superhigh-organic-sulfur coals[J]. Fuel,2015,156(15):190−197.
|
[3] |
秦身钧,徐 飞,崔 莉,等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术,2022,50(3):1−38.
QIN Shenjun,XU Fei,CUI Li,et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology,2022,50(3):1−38.
|
[4] |
代世峰,任德贻,宋建芳,等. 应用XPS研究镜煤中有机硫的存在形态[J]. 中国矿业大学学报,2002,31(3):225−228.
DAI Shifeng,REN Deyi,SONG Jianfang,et al. Application of XPS in Research on Occurrence of Organic Sulfur in Vitrain[J]. Journal of China University of Mining & Technology,2002,31(3):225−228.
|
[5] |
RADKE M,SCHAEFER R G,LEYTHAEUSER D,et al. Composition of soluble organic matter in coals: relation to rank and liptinite fluorescence[J]. Geochimica Et Cosmochimica Acta,1980,44(11):1787−1800. doi: 10.1016/0016-7037(80)90228-8
|
[6] |
SUN Y Z,QIN S J,ZHAO C L,et al. Organic geochemistry of semianthracite from the Gequan mine, Xingtai coalfield, China[J]. International Journal of Coal Geology,2013,116-117(9):281−292.
|
[7] |
DZOU L I P,NOBLE R A,SENFTLE J T. Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates[J]. Organic Geochemistry,1995,23(7):681−697. doi: 10.1016/0146-6380(95)00035-D
|
[8] |
LI C,WANG C S,et al. Organic geochemistry of potential sourcrocks in the tertiary Dingqinghu formation, Nima basin, central Tibet[J]. Journal of Petroleum Geology,2011,34(1):67−85. doi: 10.1111/j.1747-5457.2011.00494.x
|
[9] |
LIAN J,GEORGE S C. Biomarker signatures of Upper Cretaceous Latrobe Group hydrocarbon source rocks, Gippsland Basin, Australia: Distribution and palaeoenvironment significance of aliphatic hydrocarbons[J]. International Journal of Coal Geology,2018,196:29−42. doi: 10.1016/j.coal.2018.06.025
|
[10] |
RADKE M,WELTE D,WILLSCH H. Geochemical study on a well in the Western Canada Basin: Relation of the aromatic distribution pattern to maturity of organic matter[J]. Geochimica et Cosmochimica Acta,1982,46:1−10. doi: 10.1016/0016-7037(82)90285-X
|
[11] |
包建平,王铁冠,周玉琦等. 甲基菲比值与有机质热演化的关系[J]. 江汉石油学院学报,1992,14(4):8−19.
BAO Jianping,WANG Tieguan,ZHOU Yuqi,et al. The relationship between Methylphenanthrene ratios and the evolution of or-ganic matter[J]. Journal of Oil and Gas Technology,1992,14(4):8−19.
|
[12] |
SUN Y. Petrologic and geochemical characteristics of “barkinite” from the Dahe mine, Guizhou Province, China[J]. International Journal of Coal Geology,2003,56(3/4):269−276.
|
[13] |
郑 超,马东民,夏玉成,等. 韩城矿区煤层气富集的构造控制与开发模式研究[J]. 煤炭工程,2021,53(10):89−94.
ZHENG Chao,MA Dongmin,XIA Yucheng,et al. Development mode and tectonic control of CBM enrichment in Hancheng mining area[J]. Coal Engineering,2021,53(10):89−94.
|
[14] |
姚 征,李华兵,李 宁. 韩城矿区山西组煤层气储层特征研究[J]. 煤炭技术,2021,40(5):96−99.
YAO Zheng,LI Huabing,LI Ning. Study on coalbed methane reservoir characteristics of Shanxi formation in Hancheng mining area[J]. Coal Technology,2021,40(5):96−99.
|
[15] |
王生全,钱建峰,卫兆祥,等. 陕西韩城矿区11#煤层中高岭岩矿研究[J]. 煤田地质与勘探,2002,30(4):7−10.
WANG Shengquan,QIAN Jianfeng,WEI Zhaoxiang,et al. Study of kaolinite deposit within coal bed No. 11 in Hancheng mining area, Shaanxi[J]. Coal Geology & Exploration,2002,30(4):7−10.
|
[16] |
LI J,WU P,YANG G,et al. Enrichment of Li–Ga–Zr–Hf and Se–Mo–Cr–V–As–Pb Assemblages in the No. 11 Superhigh Organic Sulfur Coal from the Sangshuping Coal Mine, Weibei Coalfield, Shaanxi, North China[J]. Energies,2020,13:6660. doi: 10.3390/en13246660
|
[17] |
张恩强,冯 博,张永乐,等. 桑树坪煤矿11#煤开采对其上3#煤影响的观测研究[J]. 煤炭技术,2016,35(2):1−3.
ZHANG Enqiang,FENG Bo,ZHANG Yongle,et al. Observation study about impacts of No. 11 coal seam exploitation on upper No. 3 coal mine in Mine of Sangshuping[J]. Coal Technology,2016,35(2):1−3.
|
[18] |
牛永杰,赵巧静,李 新. 广西合山石村矿超高有机硫煤饱和烃特征分析[J]. 燃料化学学报,2020,48(4):395−404.
NIU Yongjie,ZHAO Qiaojing,LI Xin. Saturated hydrocarbon characteristics of super high organic sulfur coal in Heshan Shicun mine, Guangxi[J]. Journal of Fuel Chemistry and Technology,2020,48(4):395−404.
|
[19] |
LI Baoqing,ZHUANG Xinguo,LI Jing,et al. Enrichment and distribution of elements in the Late Permian coals from the Zhina Coalfield, Guizhou Province, Southwest China[J]. International Journal of Coal Geology,2017,171:111−129. doi: 10.1016/j.coal.2017.01.003
|
[20] |
张景业,杨秋玲,张 威. 新义井田2号煤中若干微量元素地球化学特征[J]. 能源与环保,2019,41(1):79−83.
ZHANG Jingye,YANG Qiuling,ZHANG Wei. Geochemical characteristics of some trace elements in No. 2 coal seam of Xinyi Mining Field[J]. China Energy and Environmental Protection,2019,41(1):79−83.
|
[21] |
赵师庆. 实用煤岩学[M]. 北京: 地质出版社, 1991: 64-75.
ZHAO Shiqing. Practical Coal Petrology [M]. Beijing: Geological publishing house, 1991: 64-75.
|
[22] |
易同生. 特高硫煤中镓的富集其地质成因[D]. 徐州: 中国矿业大学, 2007.
YI Tongsheng. Enrichment of gallium in ultra-high sulfur coal and its geological origin[D]. Xuzhou: China University of Mining and Technology, 2007.
|
[23] |
DAI S F,REN D Y,CHOU C L,et al. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21. doi: 10.1016/j.coal.2011.02.003
|
[24] |
代世峰, 任德贻, 唐跃刚. 煤中常量元素的赋存特征与研究意义[J]. 煤田地质与勘探, 2005, (33)2: 1-5.
DAI Shifeng, REN Deyi, TANG Yuegang. Modes of occurrence of major elements in coal and their study significance[J]. Coal Geology &Exploration, 2005, (33)2: 1-5.
|
[25] |
吴艳艳,秦 勇,易同生,等. 凯里高硫煤中某些微量元素的富集及成因分析[J]. 地球化学,2008,37(6):615−622.
WU Yanyan,QIN Yong,YI Tongsheng,et al. Enrichment and geochemical origin of some trace elements in high-sulfur coal from Kaili eastern Guizhou Province[J]. Geochimica,2008,37(6):615−622.
|
[26] |
张 参,阳 宏,王飞龙,等. 渤中凹陷南洼东营组烃源岩有机地球化学特征[J]. 海洋地质前沿,2020,36(11):35−44.
ZHANG Can,YANG Hong,WANG Feilong,et al. Organic geochemistry of the source rocks in the dongying formation of the south Bozhong subsag[J]. Marine Geology Frontiers,2020,36(11):35−44.
|
[27] |
XU S C,LIU Z J,ZHANG P,et al. Characterization of depositional conditions for lacustrine oil shales in the Eocene Jijuntun formation, Fushun basin, NE China[J]. International Journal of Coal Geology,2016,167:10−30. doi: 10.1016/j.coal.2016.09.004
|
[28] |
朱友林. 三塘湖盆地马朗凹陷中二叠统芦草沟组烃源岩饱和烃地球化学特征[J]. 石化技术,2021,28(5):153−154.
ZHU Youlin. Geochemical characteristics of saturated hydrocarbon in source rocks of Middle Permian Lucaogou Formation in Malang sag, Santanghu Basin[J]. Petrochemical Industry Technology,2021,28(5):153−154.
|
[29] |
BAI Y,HUANG L,ZHAO J. Geochemical characteristics of Chang 91 source rocks of upper Triassic Yanchang formation in Zhidan-Ansai area, Ordos Basin and its significance for tight oil exploration[J]. Petroleum Science and Technology,2020,38(6):524−534. doi: 10.1080/10916466.2020.1772819
|
[30] |
杨建磊,尚海港,胡秋媛. 渤海湾盆地板桥凹陷原油地球化学特征[J]. 中国石油大学胜利学院学报,2019,33(4):10−17.
YANG Jianlei,SHANG Haigang,HU Qiuyuan. Organic geochemical characteristics of crude oils from Banqiao depression, Bohai bay basin[J]. Journal of Shengli College China University of Petroleum,2019,33(4):10−17.
|
[31] |
Burnham A K,Clarkson J E,Singleton M F,et al. Biological markers from Green River kerogen decomposition[J]. Geochimica Et Cosmochimica Acta,1982,46(7):1243−1251. doi: 10.1016/0016-7037(82)90009-6
|
[32] |
雷加锦, 濮英英, 任德贻. 贵定超高有机硫煤中的细菌体及其意义[J]. 岩石学报, 1995, 4: 456-461.
LEI Jiajin, PU Yingying, REN Deyi. Bacterium-Like bodies and its significance in high organosulfur coal from Guiding [J]. 1995, 4: 456-461.
|
[33] |
桑树勋,刘焕杰,施 健. 海南岛红树林泥炭中硫及其成因研究[J]. 煤田地质与勘探,1993,21(1):12−17.
SANG Shuxun,LIU Huanjie,SHI Jian. Study of Sulphur and its genesis in mangrove peats of Hainan island[J]. Coal Geology and Exploration,1993,21(1):12−17.
|
[34] |
马东正. 准噶尔盆地东南缘中上二叠统烃源岩地球化学特征及构造背景[D]. 兰州: 兰州大学, 2019.
MA Dongzheng. Geochemical characteristics and tectonic settings of the middle and upper Permian hydrocarbon source rocks in the southeastern margin of Junggar Basin[D]. Lanzhou: Lanzhou University, 2019.
|
[35] |
MATYASIK I,BIELEN W. Aromatic steroids as a tool in geochemical interpretation[J]. Nafta-Gaz,2015,71(6):376−383.
|
[36] |
徐振刚. 中国现代煤化工近25年发展回顾[J]. 煤炭科学技术,2020,48(8):1−25.
XU Zhengang. Review, rethink and prospect of China’s modern coal chemical industry development in recent 25 years[J]. Coal Science and Technology,2020,48(8):1−25.
|
[37] |
孙 雷,莫少武,宗文明,等. 大兴安岭北部拉布达林盆地中生代烃源岩生物标志化合物特征及其意义[J]. 东北石油大学学报,2019,43(6):9−10,73-82.
SUN Lei,MO Shaowu,ZONG Wenming,et al. Characteristics and implicaions of biomarker compounds of the Mesozoic source rock in Labudalin basin, northern Daxinganling mountains[J]. Journal of Northeast Petroleum University,2019,43(6):9−10,73-82.
|
[38] |
PETERS K E, MOLDOWAN J M. The Biomarker Guide: Interpreting molecular fossils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall Inc, 1993.
|
[39] |
ALBAGHDADY A,PHILP R P. Organic geochemical characterization of crude oils and source rocks from Concession 6, central Sirt Basin, Libya[J]. Arabian Journal of Geosciences,2020,13(18):911. doi: 10.1007/s12517-020-05746-4
|
[40] |
MARQUES J A,COSTA P G,Marangoni L,et al. Environmental health in southwestern Atlantic coral reefs: Geochemical, water quality and ecological indicators[J]. Science of The Total Environment,2018,651:261−270.
|
[41] |
EI M M. Biomarkers compounds as indicators of environments and maturation of source rocks of wells, north western desert, egypt[J]. Petroleum Science,2014,1(7):1−10.
|
[42] |
李 丽,孟庆涛,刘招君,等. 黄县盆地古近系李家崖组油页岩与煤有机地球化学特征及有机质来源分析[J]. 世界地质,2021,40(2):343−353.
LI Li,MENG Qing tao,LIU Zhao jun,et al. Organic geochemical characteristics and organic matter source analysis of oil shale and coal in Paleogene Lijiaya Formation in Huangxian Basin[J]. Global Geology,2021,40(2):343−353.
|
[43] |
WEN Z,WANG R,RADKE M,et al. Retene in pyrolysates of algal and bacterial organic matter[J]. Organic Geochemistry,2000,31(7):757−762.
|
[44] |
RADKE M,WILLSCH H. Extractable alky dibenzothiophenes in Posidonia shale (Toarcian) source rocks: relationship of yields to petroleum formation and expulsion[J]. Geochemica Cosmochim Acta,1994,58(23):5223−5244. doi: 10.1016/0016-7037(94)90307-7
|
[45] |
蒙炳坤,周世新,李 靖,等. 柴达木盆地西北部原油芳烃分子标志化合物分布特征及意义[J]. 天然气地球科学,2021,32(5):738−753.
MENG Bingkun,ZHOU Shixin,LI Jing,et al. Distribution characteristics and significance of the aromatic hydrocarbons molecular biomarker in crude oil from the northwestern Qaidam Basin[J]. Natural Gas Geoscience,2021,32(5):738−753.
|
[46] |
RADKE M. The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons[J]. Advances in organic geochemistry 1981, 1983: 504-512.
|
[47] |
KVALHEIM O,CHRISTY A A,TELNAES N,et al. Maturity determination of organic matter in coals using methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta,1987,51:1883−1888. doi: 10.1016/0016-7037(87)90179-7
|
[48] |
王保忠,王传尚,汪啸风,等. 海相高过成熟页岩芳烃特征及页岩气意义[J]. 地球科学,2019,44(11):3705−3716.
WANG Baozhong,WANG Chuanshang,WANG Xiaofeng,et al. Characteristics of aromatic compounds in high-over matured marine shale and its significance to shale gas[J]. Earth Science,2019,44(11):3705−3716.
|
[49] |
姜德民,季长军. 羌塘盆地胜利河油页岩芳烃分布特征及意义[J]. 地质找矿论丛,2020,35(2):197−203.
JIANG Demin,JI Changjun. Distribution characteristic of aromatic hydrocarbon and the significance of Shenglihe oil shale in Qiangtang basin[J]. Contributions to Geology and Mineral Resources Reasearch,2020,35(2):197−203.
|
[50] |
崔海忠,王飞龙,王清斌,等. 渤海海域庙西北洼烃源岩芳烃地球化学特征[J]. 成都理工大学学报(自然科学版),2021,48(6):653−660.
CUI Haizhong,WANG Feilong,WANG Qingbin,et al. Geochemical characteristics of aromatics from source rocks in Miaoxibei sag, Bohai sea area, China[J]. Journal of Chengdu of Technology(Science & Technology Edition),2021,48(6):653−660.
|
[1] | LIN Jingyan, SUN Mingxiao, LI Hongdou, ZUO Guibin, GUO Wenmu, Maksim G Blokhin, WANG Zhiyong, TIAN Zeqi, XIAO Lin. Geochemical characteristics of rare earth elements in Late Permian coals in Western Henan and indicative meaning[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 184-192. DOI: 10.13199/j.cnki.cst.2021-1076 |
[2] | YANG Yuliang;JIA Qifeng, . Study on difference of biogas production in different rank coal[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(10): 242-250. |
[3] | HAO Ruilin, HUANG Wenhui, JIU Bo. Characteristics of trace elements in coal and comparison of coal-forming environment in Shizuishan Area[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 158-167. |
[4] | LUO Wenqiang, MA Xiangxian, TANG Lulu, LUO Yifan, WU Kanglin, ZHANG Shangkun, YANG Bin, LIANG Jipo. Coal quality characteristics and its coal-forming environment of No.3 coal seams in Zhangwan Minefield, Southwest Shandong Province[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 147-157. |
[5] | XU Ting, LI Ning, YAO Zheng, WANG Qiang, XIE Qing, GAO Jun. Distribution and geological controls of tar-rich coals in Yushen mining area of Northern Shaanxi[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(3): 161-168. |
[6] | WANG Shaoqing, SUN Yibo, SHA Yuming. Study on organic geochemical features of rich hydrogen coal in different coal accumulation areas[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (9). |
[7] | WEI Yingchun, JIA Xu, LIU Zhifei, MIN Luoping, HUA Fanghui, NING Shuzheng, CAO Daiyong. Study on lithology and coal quality features and coal forming environment of Yan’an Formation in Yuanyanghu Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (7). |
[8] | CAO Yunxing, TIAN Lin, FAN Yanchang, LIU Jianzhong, ZHANG Shuai. Study on cracking ring form of carbon dioxide gas phase fracturing in low permeability coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (6). |
[9] | LI Bi, XU Yangdong, TANG Lifang. Study on sulfur characteristics and coal paleoenvironment inHongmei Mine of Zhina Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (5). |
[10] | ZHANG Jie-fang SANG Shu-xun WANG Wen-feng HUANG Hua-zhou LIU Shi-qi, . Occurrence Characteristics and Genetic Mechanism of Sulfur in Coal in Nuodong Exporlation Area of Southwestern Guizhou Province[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (2). |
1. |
姜春露,黄文迪,傅先杰,郑刘根,程世贵,单崇磊. 淮南阜东矿区二叠系砂岩高盐地下水低硫酸盐特征及成因机制. 煤田地质与勘探. 2023(11): 74-82 .
![]() |