CHU Yapei,ZHANG Dongming,YANG Han,et al. Study on evolution law of mechanical properties of coal samples subjected to freezing and freeze-thaw cycles of liquid nitrogen[J]. Coal Science and Technology,2023,51(5):82−92
. DOI: 10.13199/j.cnki.cst.2021-1451Citation: |
CHU Yapei,ZHANG Dongming,YANG Han,et al. Study on evolution law of mechanical properties of coal samples subjected to freezing and freeze-thaw cycles of liquid nitrogen[J]. Coal Science and Technology,2023,51(5):82−92 . DOI: 10.13199/j.cnki.cst.2021-1451 |
The permeability of coal reservoir is generally low in China, how to effectively improve the permeability of coal reservoir is a key and difficult point of coalbed methane exploitation, Liquid nitrogen fracturing technology as a kind waterless fracturing technology has received extensive attention in recent years. In order to reveal the influence of liquid nitrogen freezing and freeze-thaw on the mechanical properties of coal, the temperature distribution of coal samples was monitored by infrared thermal imaging technology, and uniaxial compression and acoustic emission tests were performed on the coal samples after the liquid nitrogen freezing and freezethaw, the P-wave velocity, porosity, acoustic emission and energy evolution characteristics of coal samples before and after the freezing and freeze thaw were analyzed. The research result showed that: ①After 360 min freezing and 12 freeze-thaw cycles, the P-wave velocity of coal samples decreased by 58.2% and 64.7%, respectively. The P-wave velocity does not decrease significantly during the initial freezing and freeze-thaw cycle stages, the velocity gradually decreases with the increase of freezing time and freeze-thaw cycles. ②The temperature of the coal sample gradually decreases with increase of freezing times. The surface temperature of the coal sample drops below -60°C after the liquid nitrogen frozen for 180s, the temperature distribution fluctuations at the center of the coal sample occurs due to the different thermal conduction coefficient of the coal particles. ③After liquid nitrogen freezing and freezethaw, the elastic modulus of coal sample decreases exponentially, while the porosity gradually increases. The increase in porosity of the coal sample after liquid nitrogen freeze-thaw is greater than that after liquid nitrogen freezing. ④The acoustic emission activity of coal samples during uniaxial loading is divided into development phase, active phase and severe phase, the maximum acoustic emission ringing count and cumulative acoustic emission ringing count of coal samples increase with the increase of freezing time and freeze-thaw cycles. ⑤Liquid nitrogen freezing and freeze-thaw will weaken the energy storage limit of coal sample, resulting in the reduction of the total energy, elastic energy and dissipated energy at the peak point during the uniaxial loading process.
[1] |
秦 勇,袁 亮,胡千庭,等. 我国煤层气勘探与开发技术现状及发展方向[J]. 煤炭科学技术,2012,40(10):1−6.
QIN Yong,YUAN Liang,HU Qianting,et al. Status and development orientation of coal bed methane exploration and development technology in China[J]. Coal Science and Technology,2012,40(10):1−6.
|
[2] |
申宝宏,雷 毅. 我国煤矿区非常规能源开发战略思考[J]. 煤炭科学技术,2013,41(1):16−20.
SHEN Baohong,LEI Yi. Strategic considerations on unconventional energy development in China coal mining area[J]. Coal Science and Technology,2013,41(1):16−20.
|
[3] |
袁 亮. 低透高瓦斯煤层群安全开采关键技术研究[J]. 岩石力学与工程学报,2008,28(7):1370−1379. doi: 10.3321/j.issn:1000-6915.2008.07.009
YUAN Liang. Key technique of safe mining in low permeability and methane-rich seam group[J]. Chinese Journal of Rock Mechanics and Engineering,2008,28(7):1370−1379. doi: 10.3321/j.issn:1000-6915.2008.07.009
|
[4] |
KANG Yili,XU Chengyuan,YOU Lijun,et al. Comprehensive evaluation of formation damage induced by working fluid loss in fractured tight gas reservoir[J]. Journal of Natural Gas Science and Engineering,2014,18:353−359. doi: 10.1016/j.jngse.2014.03.016
|
[5] |
任韶然,范志坤,张 亮,等. 液氮对煤岩的冷冲击作用机制及试验研究[J]. 岩石力学与工程学报,2013,32(S2):3790−3794.
REN Shaoran,FAN Zhikun,ZHANG Liang,et al. Mechanisms and experimental study of thermal-shock effect on coal-rock using liquid nitrogen[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(S2):3790−3794.
|
[6] |
杨睿月,丛日超,刘 晗,等. 液氮冷冲击作用对煤岩微纳米尺度孔隙结构及力学性质的影响[J]. 天然气工业,2021,41(7):82−92. doi: 10.3787/j.issn.1000-0976.2021.07.009
YANG Ruiyue,CONG Richao,LIU Han,et al. Pore-scale analysis of coal structure and mechanical properties evolution through liquid nitrogen thermal shock[J]. Natural Gas Industry,2021,41(7):82−92. doi: 10.3787/j.issn.1000-0976.2021.07.009
|
[7] |
张春会,郭晓康,李和万,等. 液氮溶浸对饱水煤裂隙扩展的影响研究[J]. 煤炭科学技术,2016,44(6):99−105.
ZHANG Chunhui,GUO Xiaokang,LI Hewan,et al. Study on influence of liquid nitrogen infiltration to saturated water coal fracture expanded[J]. Coal Science and Technology,2016,44(6):99−105.
|
[8] |
张春会,张海霞,于永江,等. 饱水度和再溶浸对液氮冷冻煤致裂的影响[J]. 煤炭学报,2016,41(S2):400−406.
ZHANG Chunhui,ZHANG Haixia,YU Yongjiang,et al. Effects of saturation and re-submersion on coal fracturing subjected to liquid nitrogen shock[J]. Journal of China Coal Society,2016,41(S2):400−406.
|
[9] |
张春会,刘泮森,王锡朝,等. 焦煤和无烟煤的液氮冷冻致裂效果对比试验[J]. 煤炭科学技术,2017,45(6):30−34,49.
ZHANG Chunhui,LIU Pansen,WANG Xichao,et al. Contrast test study on fracturing anthracite and coking coal by liquid nitrogen cooling[J]. Coal Science and Technology,2017,45(6):30−34,49.
|
[10] |
李和万,张子恒,王来贵,等. 循环冷浸致煤样结构损伤的力学性质演化规律研究[J]. 煤炭学报,2021,46(S2):770−776.
LI Hewan,ZHANG Ziheng,WANG Laigui,et al. Study on evolution law of mechanical properties of coal sample structure damage caused by cyclic cold leaching[J]. Journal of China Coal Society,2021,46(S2):770−776.
|
[11] |
李和万,左建平,王来贵,等. 液氮冷加载对围压煤体结构损伤的影响规律研究[J]. 采矿与安全工程学报,2020,37(4):804−811.
LI Hewan,ZUO Jianping,WANG Laigui,et al. Effect of cold loading by liquid nitrogen on structural damage of coal[J]. Journal of Mining And Safety Engineering,2020,37(4):804−811.
|
[12] |
李和万,刘 戬,王来贵,等. 液氮冷加载对不同节理煤样结构损伤的影响[J]. 煤炭学报,2020,45(11):3833−3840.
LI Hewan,LIU Jian,WANG Laigui,et al. Effect of liquid nitrogen on structural damage of coal samples with different joints[J]. Journal of China Coal Society,2020,45(11):3833−3840.
|
[13] |
李和万,王来贵,张 豪,等. 循环冷加载条件下受载煤样结构损伤规律[J]. 煤炭学报,2017,42(9):2345−2352.
LI Hewan,WANG Laigui,ZHANG Hao,et al. Investigation on damage laws of loading coal samples under cyclic cooling treatment[J]. Journal of China Coal Society,2017,42(9):2345−2352.
|
[14] |
魏建平,孙刘涛,王登科,等. 温度冲击作用下煤的渗透率变化规律与增透机制[J]. 煤炭学报,2017,42(8):1919−1925.
WEI Jianping,SUN Liutao,WANG Dengke,et al. Change law of permeability of coal under temperature impact and the mechanism of increasing permeability,[J]. Journal of China Coal Society,2017,42(8):1919−1925.
|
[15] |
王登科,张 平,刘淑敏,等. 温度冲击下煤层内部孔缝结构演化特征实验研究[J]. 煤炭学报,2018,43(12):3395−3403. doi: 10.13225/j.cnki.jccs.2018.0426
WANG Dengke,ZHANG Ping,LIU Shumin,et al. Experimental study on evolutionary characteristics of pore-fissure structure in coal seam under temperature impact[J]. Journal of China Coal Society,2018,43(12):3395−3403. doi: 10.13225/j.cnki.jccs.2018.0426
|
[16] |
王登科,孙刘涛,魏建平. 温度冲击下煤的微观结构变化与断裂机制[J]. 岩土力学,2019,40(2):529−538,548.
WANG Dengke,SUN Liutao,WEI Jianping. Microstructure evolution and fracturing mechanism of coal under thermal shock[J]. Rock and Soil Mechanics,2019,40(2):529−538,548.
|
[17] |
王登科,张 平,浦 海,等. 温度冲击下煤体裂隙结构演化的显微CT实验研究[J]. 岩石力学与工程学报,2018,37(10):2243−2252.
WANG Dengke,ZHANG Ping,PU Hai,et al. Experimental research on cracking process of coal under temperature variation with industrial micro-CT[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(10):2243−2252.
|
[18] |
QIN Lei,ZHAI Cheng,XU Jizhao,et al. Evolution of the pore structure in coal subjected to freeze - thaw using liquid nitrogen to enhance coalbed methane extraction[J]. Journal of Petroleum Science and Engineering,2019,175:129−139. doi: 10.1016/j.petrol.2018.12.037
|
[19] |
ZHAI Cheng,QIN Lei,LIU Shimin,et al. Pore structure in coal: pore evolution after cryogenic freezing with cyclic liquid nitrogen injection and its implication on coalbed methane extraction[J]. Energy & Fuels,2016,30(7):6009−6020.
|
[20] |
QIN Lei,ZHAI Cheng,LIU Shimin,et al. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw - A nuclear magnetic resonance investigation[J]. Fuel,2017,194:102−114. doi: 10.1016/j.fuel.2017.01.005
|
[21] |
秦 雷. 液氮循环致裂煤体孔隙结构演化特征及增透机制研究[D]. 徐州: 中国矿业大学, 2018.
QIN LEI. Pore evolution after fracturing with cyclic liquid nitrogen and the mechanism of permeability enhancing[D]. Xuzhou: China University of Mining and Technology,2018.
|
[22] |
楚亚培. 液氮冻融煤体孔隙裂隙结构损伤演化规律及增渗机制研究[D]. 重庆: 重庆大学, 2020.
CHU Yapei. Study on the damage evolution law of pore and fracture structure of coal under liquid nitrogen freeze-thaw and the mechanism of permeability enhancing[D].Chongqing: Chongqing university, 2020.
|
[23] |
楚亚培,张东明,王 满,等. 基于核磁共振技术和压汞法的液氮冻融煤体孔隙结构损伤演化规律试验研究[J]. 岩石力学与工程学报,2022,41(9):1820−1831.
CHU Yapei,ZHANG Dongming,WANG Man,et al. Experiment study on influence of liquid nitrogen freeze-thaw on pore structure of coal based on nuclear magnetic resonance technology and mercury intrusion methods[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1820−1831.
|
[24] |
张 磊,田苗苗,薛俊华,等. 液氮循环处理对不同含水率煤样渗流特性的影响[J]. 煤炭学报,2021,46(S1):291−301.
ZHANG Lei,TIAN Miaomiao,XU Junhua,et al. Effect of liquid nitrogen cycle treatment on seepage characteristics ofcoal samples with different water contents[J]. Journal of China Coal Society,2021,46(S1):291−301.
|
[25] |
卢 硕,张 磊,薛俊华,等. 液氮溶浸作用对不同煤阶煤样渗流特性的影响[J]. 煤炭学报,2020,45(5):1835−1844.
LUO Shuo,ZHANG Lei,XUE Junhua,et al. Influence of liquid nitrogen immersion on seepage characteristics of different rank coal samples[J]. Journal of China Coal Society,2020,45(5):1835−1844.
|
1. |
齐消寒,刘晓东,马恒,刘忠桦,谢文坤,张颖. 液氮-微波急速冷热冲击下饱水煤损伤及渗流特征研究. 采矿与安全工程学报. 2025(02): 472-486 .
![]() | |
2. |
于洋,江亲财,王泽华,卢毓崟,郭啟翔,曾慧明. 冲击荷载作用下冻融红砂岩动力特性及损伤模型. 煤炭学报. 2025(05): 2437-2452 .
![]() | |
3. |
韩鹏华,赵毅鑫,高森,高艺瑞,张村,胡勇. 长期水浸作用下煤样渐进破坏特征及损伤本构模型. 岩石力学与工程学报. 2024(04): 918-933 .
![]() | |
4. |
张二锋,刘慧,康跃明,杨金虎. 冻融受荷砂岩力学性能劣化与统计损伤模型研究. 煤炭科学技术. 2024(05): 84-91 .
![]() | |
5. |
张晓龙,徐培耘,林海飞,胡彪,陈晓旭,王锴,苟锐. 荷载作用下不同温差冻融砂岩孔隙发育机制研究. 中国安全生产科学技术. 2024(11): 60-69 .
![]() | |
6. |
谢昊天,徐颖,郑强强,于美鲁,谢守冬,李成杰. 冻融循环作用下饱水砂岩强度衰减及细观结构特征. 煤炭科学技术. 2024(12): 84-93 .
![]() | |
7. |
许阳,李大勇. 液氮循环冻融对煤孔隙率及吸附瓦斯性能演化特征影响的试验研究. 矿业安全与环保. 2023(03): 42-47 .
![]() | |
8. |
覃祖淼,雷瑞德. 冻融循环作用下砂岩细观劣化特性试验研究. 矿业研究与开发. 2023(08): 132-138 .
![]() | |
9. |
林海飞,罗荣卫,李博涛,秦雷,王裴,刘思博,杨二豪. 液氮冻结含水煤体能量耗散动态变化规律的试验研究. 煤炭科学技术. 2023(10): 119-128 .
![]() |