Advance Search

LI Haixiang,CAO Zhiguo,WU Baoyang,et al. Experimental study on characteristics of grounawater fracture in coalmine overlying rock[J]. Coal Science and Technology,2023,51(6):168−176

. DOI: 10.13199/j.cnki.cst.2021-1405
Citation:

LI Haixiang,CAO Zhiguo,WU Baoyang,et al. Experimental study on characteristics of grounawater fracture in coalmine overlying rock[J]. Coal Science and Technology,2023,51(6):168−176

. DOI: 10.13199/j.cnki.cst.2021-1405

Experimental study on characteristics of grounawater fracture in coalmine overlying rock

Funds: 

National Natural Science Foundation of China (52004011); Technology Project of China Energy (GJNY-18-76)

More Information
  • Received Date: May 08, 2022
  • Available Online: May 08, 2023
  • The seepage characteristics of groundwater in the overlying fissures are the key factors to be considered in the later maintenance of coal mining and goaf, especially in the underground reservoir construction area of coal mines. It is also an important part of coal mine underground reservoir. In shallow groundwater-rich areas or under extreme summer rainfall conditions, underground reservoirs form vertical recharge, and analyzing the seepage characteristics of groundwater in overlying fissures provides a scientific basis for the safe operation of coal mine underground reservoirs and the protection of groundwater resources. In this study, the solid-liquid coupling similarity model test was used to obtain the development and stability of the overlying fissures in the mining area and the characteristics of groundwater seepage after the aquifer was connected. The analysis showed that the large abscission fissures and micro-fissures that extend far and wide are mostly water storage. , the vertical fissures running through multiple rock layers have strong water conductivity, and the hydraulic connection between the separation layer fissures is mainly formed by the vertical fissures in the two sides. Under the condition of vertical recharge, groundwater first infiltrates along the vertical fissures in an unsaturated manner, and is gradually saturated regionally from the upper and lower overlying fissures, finally forming a stable saturated infiltration form. On this basis, a mathematical model of groundwater seepage in saturated seepage state is established, and the numerical method is used to solve it. It is verified with similar simulation experiments that vertical fractures are the main water conduction channels, and their water conduction can account for up to 97%. At the same time, the migration speed of groundwater in vertical fractures is also many orders of magnitude higher than that in abscission fractures. Finally, through the sensitivity analysis, it is concluded that the vertical fracture seepage is positively correlated with the fracture development degree and the total water inflow, and negatively correlated with the rock permeability. The migration time of groundwater in overlying fissures is negatively correlated with the degree of fissure development, rock permeability and total water inflow.

  • [1]
    顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报,2015,40(2):239−246.

    GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society,2015,40(2):239−246.
    [2]
    顾大钊,颜永国,张 勇,等. 煤矿地下水库煤柱动力响应与稳定性分析[J]. 煤炭学报,2016,41(7):1589−1597.

    GU Dazhao,YAN Yongguo,ZHANG Yong,et al. Experimental study and numerical simulation for dynamic response of coal pillars in coal mine underground reservoir[J]. Journal of China Coal Society,2016,41(7):1589−1597.
    [3]
    曹志国,李全生,董斌琦. 神东矿区煤炭开采水资源保护利用技术与应用[J]. 煤炭工程,2014,46(10):162−164.

    CAO Zhiguo,LI Quansheng,DONG Binqi. Water resource protection and utilization technology and application of coal mining in Shendong Mining Area[J]. Coal Engineering,2014,46(10):162−164.
    [4]
    曹志国,何瑞敏,王兴峰. 地下水受煤炭开采的影响及其储存利用技术[J]. 煤炭科学技术,2014,42(12):113−116.

    CAO Zhiguo,HE Ruimin,WANG Xingfeng. Coal mining affected to underground water and underground water storage and utilization technology[J]. Coal Science and Technology,2014,42(12):113−116.
    [5]
    顾大钊. 能源“金三角”煤炭现代开采水资源及地表生态保护技术[J]. 中国工程科学,2013,15(4):102−107.

    GU Dazhao. Modern mining of water resources and surface ecological protection technology for coal in the energy "Golden Triangle"[J]. Chinese Engineering Science,2013,15(4):102−107.
    [6]
    胡振琪,龙精华,王新静. 论煤矿区生态环境的自修复, 自然修复和人工修复[J]. 煤炭学报,2014,39(8):1751−1757.

    HU Zhenqi,LONG Jinghua,WANG Xinjing. Self-healing, natural and artificial restoration of ecological environment for coal mining[J]. Journal of China Coal Society,2014,39(8):1751−1757.
    [7]
    顾大钊. 能源“金三角”煤炭开发水资源保护与利用[M]. 北京: 科学出版社, 2012: 125−127.
    [8]
    顾大钊. 晋陕蒙接壤区大型煤炭基地地下水保护利用与生态修复[M]. 北京: 科学出版社, 2015: 139−147.
    [9]
    钱鸣高. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003: 11−18.
    [10]
    李春睿. 高强度开采覆岩裂隙场时空演化规律与瓦斯流动关系的研究[D]. 北京: 煤炭科学研究总院, 2009.

    LI Chunrui. Research on the relationship between the temporal and spatial evolution of overlying rock fissure field and gas flow in high-intensity mining[D]. Beijing: China Coal Research Institute, 2009.
    [11]
    张 勇,张 保,张春雷,等. 厚煤层采动裂隙发育演化规律及分布形态研究[J]. 中国矿业大学学报,2013,42(6):935−940.

    ZHANG Yong,ZHANG Bao,ZHANG Chunlei,et al. Study of the dynamic evolution rules and distribution pattern of mining-induced fractures of thick coal seam[J]. Journal of China University of Mining & Technology,2013,42(6):935−940.
    [12]
    许家林,钱鸣高,金宏伟. 岩层移动离层演化规律及其应用研究[J]. 岩土工程学报,2004,26(5):632−636.

    XU Jialin,QIAN Minggao,JIN Hongwei. Study on the evolution law of strata movement and separation and its application[J]. Chinese Journal of Geotechnical Engineering,2004,26(5):632−636.
    [13]
    毕业武. 保护层开采对煤层渗透特性影响规律的研究[D]. 阜新: 辽宁工程技术大学, 2005.

    BI Yewu, Research on effect law of coal seam penetrability after mining protection layer [D]. Fuxin: Liaoning University of Engineering and Technology, 2005.
    [14]
    LI B,GARGA V K,DAVIES M H. Relationships for non-darcy flow in rockfill[J]. Journal of Hydraulic Engineering,1998,124(2):206−212. doi: 10.1061/(ASCE)0733-9429(1998)124:2(206)
    [15]
    MOUTSOPOULOS K N,TSIHRINTZIS V A. Approximate analytical solutions of the forchheimer equation[J]. Journal of Hydrology,2005,309(1-4):93−103. doi: 10.1016/j.jhydrol.2004.11.014
    [16]
    KOGURE, KEIJI. Experimental study on permeability of crushed rock [J]. Memoirs of the Defense Academy, 1976, 16(4): 149−154.
    [17]
    袁 亮,郭 华,沈宝堂,等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报,2011,36(3):357−365.

    YUAN Liang,GUO Hua,SHEN Baotang,et al. Circular overlying zone at longwall panel for efficient methane capture of mutiple coal seams with low permeability[J]. Journal of China Coal Society,2011,36(3):357−365.
    [18]
    李文平,刘启蒙,孙如华. 构造破碎带滞后突水渗流转换理论与试验研究[J]. 煤炭科学技术,2011,39(11):10−13.

    LI Wenping,LIU Qimeng,SUN Ruhua. Theoretical and experiment study on vadose conversion of water inrush later occurred from structure broken zone[J]. Coal Science and Technology,2011,39(11):10−13.
    [19]
    程志恒. 近距离煤层群保护层开采裂隙演化及渗流特征研究[D]. 北京: 中国矿业大学(北京), 2015.

    CHENG Zhiheng. Study on crack evolution and permeability characteristic of protective coal seam mining in close coal seams group [D]. Beijing: China University of Mining and Technology-Beijing, 2015.
    [20]
    金志远. 浅埋近距煤层重复扰动区覆岩导水裂隙发育规律及其控制[D]. 徐州: 中国矿业大学, 2015.

    JIN Zhiyuan. Development laws and control of overlying strata water flowing fractures in repeated disturbance zone of shallowly-buried short-distance coal seams [D]. Xuzhou: China University of Mining and Technology, 2015.
    [21]
    张连霞,郑玉峰,徐 晶,等. 气候变暖背景下鄂尔多斯市暴雨时空分布特征及灾害防御[J]. 内蒙古气象,2020,249(4):14−16.

    ZHANG Lianxia,ZHENG Yufeng,XU Jing,et al. Temporal and spatial distribution characteristics of heavy rain and disaster prevention in Ordos City under the background of climate warming[J]. Inner Mongolia Meteorology,2020,249(4):14−16.
    [22]
    毛自新,李雪佳. 矿井污水的优化复用技术[J]. 煤炭科学技术,2017,45(2):31−52.

    MAO Zixin,LI Xuejia. Optimized reuse technology of mine waste water[J]. Coal Science and Technology,2017,45(2):31−52.
    [23]
    王 军,赵欢欢,刘晶歌. 薄基岩浅埋煤层工作面地表动态移动规律研究[J]. 矿业安全与环保,2016,43(1):21−25.

    WANG Jun,ZHAO Huanhuan,LIU Jingge. Study on dynamic law of surface movement above working face of shallow-buried coal seam with thin bedrock[J]. Mining Safety and Environmental Protection,2016,43(1):21−25.
    [24]
    马剑飞,李向全. 神东矿区煤炭开采对含水层破坏模式研究[J]. 煤炭科学技术,2019,47(3):212−218.

    MA Jianfei,LI Xiangquan. Study on models of aquifer failure caused by coal mining in Shendong Mining Area[J]. Coal Science and Technology,2019,47(3):212−218.
    [25]
    郑茂辉,李鸿喜. 岩溶断块区地下水流数值模拟[J]. 水文地质工程地质,2001(1):7−20.

    ZHENG Maohui,LI Hongxi. Numerical simulation of groundwater flow in karst fault block area[J]. Hydrogeology and Engineering Geology,2001(1):7−20.
    [26]
    杨 杨,唐建生,苏春田,等. 岩溶区多重介质水流模型研究进展[J]. 中国岩溶,2014,33(4):419−424.

    YANG Yang,TANG Jiansheng,SU Chuntian,et al. Research progress of multi-media flow models in karst areas[J]. China Karst,2014,33(4):419−424.
    [27]
    王红梅,黄 勇,马红宇,等. 某水库岩溶管道对库区蓄水的影响分析[J]. 勘察科学技术,2017,207(1):38−43.

    WANG Hongmei,HUANG Yong,MA Hongyu,et al. Analysis of the influence of a karst pipeline in a reservoir on water storage in the reservoir area[J]. Investigation Science and Technology,2017,207(1):38−43.
    [28]
    张 凯,郭俊廷,滕 腾. 弱胶结砂质泥岩注水软化与渗流特性试验研究−以神东矿区为例[J]. 煤炭科学技术,2022,50(2):195−201.

    ZHANG Kai,GUO Junting,TENG Teng. Experimental study on water-softening and seepage characteristics of weakly cemented sandy mudstone:Taking Shendong Coal Mining Area as an example[J]. Coal Science and Technology,2022,50(2):195−201.
    [29]
    POLLOCK D W. Semianalytical computation of path lines for finite-difference models[J]. Groundwater,1988,26(6):743−750.
    [30]
    POLLOCk D W. User guide for MODPATH version 6-A particle-tracking model for MODFLOW[M]. Techniques & Methods, 2012.
  • Cited by

    Periodical cited type(21)

    1. 王成, 李洋, 刘江斌, 张仲杰, 于永江, 刘佳铭. 不同浸泡时间下煤岩组合体破坏特征点能量演化机制. 辽宁工程技术大学学报(自然科学版). 2025(03)
    2. 陆睿,尹尚先,王玉国,孟浩鹏,王旭. 基于GMS的深部煤层开采工作面涌水量预测. 煤矿安全. 2025(01): 164-170 .
    3. 宁殿艳,朱开鹏,朱永生,袁淑霞,周振方. 基于有限元模拟的矿井微震源高精度定位方法. 煤田地质与勘探. 2025(02): 167-178 .
    4. 武强,姚义,杜沅泽,李会平,赵颖旺,徐华,刘守强,王潇. 矿井突水巷道涉水人员稳定性物理模拟试验研究. 煤炭学报. 2025(01): 13-22 .
    5. 王佟,韩效忠,吴兆剑,赵欣,曹安业,张彪,程彦,李聪聪,孙鹏杰,王伟超,宁建鸿. 矿山地质层改性的理论架构、关键技术与工程应用. 煤炭学报. 2025(01): 491-505 .
    6. 尹尚先,姚辉,梁满玉,吴威,连会青,侯恩科,赵鹏,张义安,王雄. 突水系数60年:面临困境及发展方向. 煤炭学报. 2025(01): 600-609 .
    7. 李昂,杨钧皓,张文忠,李远谋,薛智轩,范六一,田胜祺. 基于疏水降压法井筒渗水模拟试验与应用研究. 煤炭科学技术. 2025(02): 301-313 . 本站查看
    8. 曾一凡,朱慧聪,武强,王厚柱,傅先杰,王铁记,王玺瑞,樊九林,胡荣杰,才向军,阚雪冬,高生保. 我国不同类别煤层底板水害致灾机理与防控远景导向. 煤炭学报. 2025(02): 1073-1099 .
    9. 范文博,张同钊,牛鹏翔,生帅,刘书杰. 超深竖井施工风险分析及对策研究. 建井技术. 2025(02): 66-72 .
    10. 王瑾,王世奕,梁桢,李福勤. 浅层气浮处理矿井水工程实践. 当代化工研究. 2024(03): 114-116 .
    11. 李海燕,夏茂哲,张锟,张波,孙怀凤,赵国东,韩俊飞,刘功杰,贺恩磊. 岩溶凹陷式露天矿山大流量涌水治理技术. 煤炭科学技术. 2024(01): 267-279 . 本站查看
    12. 陈军涛,李昊,贾东秀,马庆,李文昕. 流固耦合作用下含不同长度裂隙灰岩注浆加固特性试验研究. 煤炭科学技术. 2024(03): 189-199 . 本站查看
    13. 周来,叶涛,郑双双,朱雪强,吴江峰. 关闭煤矿矿井水中“双源”铁污染的电化学机理实验模拟. 煤炭科学技术. 2024(03): 323-331 . 本站查看
    14. 邹光华,杨健男. 基于极限平衡理论的陷落柱防水煤柱留设研究. 华北科技学院学报. 2024(02): 1-6 .
    15. 曾一凡,朱慧聪,武强,王皓,郭小铭,崔芳鹏,庞振忠,刘守强,杨维弘. 我国不同类别煤层顶板水害致灾机理与防控路径. 煤炭学报. 2024(03): 1539-1555 .
    16. 姚辉,尹慧超,梁满玉,尹尚先,侯恩科,连会青,夏向学,张金福,吴传实. 机器学习方法在矿井水防治理论体系研究中的应用思考. 煤田地质与勘探. 2024(05): 107-117 .
    17. 童裕佳,刘桂娟,李佳尧,季红军,呼志平,白利军,麻瑞军,李卫星. 井下煤矿采出水回用陶瓷膜集成工艺研究. 膜科学与技术. 2024(04): 96-104 .
    18. 刘伟韬,吴海凤,申建军. 基于RSM的超细水泥注浆材料配比及性能优化模型. 煤炭科学技术. 2024(08): 146-158 . 本站查看
    19. 王甜甜,方刚,张溪彧,王淑璇. 基于水化学和氢氧同位素特征的敏东一矿水源定性定量研究. 煤矿安全. 2024(10): 190-197 .
    20. 武强,朱慧聪,胡辰睿,魏新疆,侯柱平,肖璇,刘学,李俊杰,赵佳,程一帆,杨亮,邢一迪,曾一凡. 我国煤层水害基本架构及发展情势. 煤炭工程. 2024(10): 12-21 .
    21. 高利军,王海,王建文,马亮,李尚杰. 陕北柠条塔煤矿帷幕注浆治理烧变岩水害效果综合评价. 勘察科学技术. 2024(05): 45-50 .

    Other cited types(7)

Catalog

    Article views (125) PDF downloads (52) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return