Advance Search
XU Yanchun,MA Zimin,LI Xiaoer,et al. Research on the influence of the nature of the weathered bedrock zone on the roof water bursting and sand bursting: taking Zhaogu No. 1 Mine as an example[J]. Coal Science and Technology,2023,51(7):64−71. DOI: 10.13199/j.cnki.cst.2021-1268
Citation: XU Yanchun,MA Zimin,LI Xiaoer,et al. Research on the influence of the nature of the weathered bedrock zone on the roof water bursting and sand bursting: taking Zhaogu No. 1 Mine as an example[J]. Coal Science and Technology,2023,51(7):64−71. DOI: 10.13199/j.cnki.cst.2021-1268

Research on the influence of the nature of the weathered bedrock zone on the roof water bursting and sand bursting: taking Zhaogu No. 1 Mine as an example

Funds: 

National Natural Science Foundation of China(51934008)

More Information
  • Received Date: May 01, 2022
  • Available Online: June 27, 2023
  • Based on Zhaogu No. 1 Mine’s characters that are the overlying thick alluvium, multi-aquifers (groups) and thin bedrock, the water pressure of the gravel aquifer under the alluvial layer reaches 4.0 MPa, defined a high-pressure aquifer. To determine the influence of bedrock properties on roof water inrush and sand bursting, and ensure the normal mining around the thin bedrock area under groups, there were tests, point loading, dry saturated water absorption rate and indoor disintegration, of bedrock samples taken from hydrological survey holes to determine those properties and influence on retaining sand-proof pillars by analyzing the variation curves of various indexes of them with depth. The experiments’ results showed that the weathering depth of bedrock exceeds 20 m; the dry saturated water absorption rate of mudstone in the vertical depth ranging of 0−6.5 m from the bottom interface of the alluvial layer is greater than 15%. The mudstone exposed to water features muddy disintegration, broken rock fragments and mud blocks, which means it is good water-proof performance of effective bridging mining cracks and a protective layer for waterproof coal pillars; as the strength of weathered mudstone below the alluvial layer 0 to 11.4 m is lower than it of the fine gravel aquifer in the lower that of 4.0 MPa, the sand control coal pillar’s protective layer that is greater more than 11.4 m is cannot be entirely composed of weathered mudstone; due to strong resistance to disintegration and lower dry saturated water absorption rate of sandstone, the protective layer cannot be entirely composed of weathered sandstone. The compressive strength of weathered sandstone, when it is higher than 4.0 MPa, can effectively resist the overlying water head pressure.

  • [1]
    盖秋凯,黄 磊,赵 霖. 基于因子分析法的焦作矿区底板突水模型研究[J]. 煤炭工程,2021,53(1):123−127.

    GAI Qiukai,HUANG Lei,ZHAO Lin. Floor water inrush model of Jiaozuo mining area based on factor analysis[J]. Coal Engineering,2021,53(1):123−127.
    [2]
    尹尚先,徐 斌,徐 慧,等. 综采条件下煤层顶板导水裂缝带高度计算研究[J]. 煤炭科学技术,2013,41(9):138−142.

    YIN ShangXian,XU Bin,XU Hui,et al. Study on Height Calculation of Water Conducted Fractured Zone Caused by Fully Mechanized Mining[J]. Coal Science and Technology,2013,41(9):138−142.
    [3]
    杨俊哲,吴作启,李宏杰,等. 浅埋薄基岩工作面溃水溃砂模拟试验及影响因素分析[J]. 煤炭科学技术,2021,49(10):1−8.

    YANG Junzhe,WU Zuoqi,LI Hongjie,et al. Simulation experiment and influence factors analysis of collapsing of water and sand in shallow thin bedrock face[J]. Coal Science and Technology,2021,49(10):1−8.
    [4]
    王家臣,王兆会,唐岳松,等. 深埋弱胶结薄基岩厚煤层开采顶板动载冲击效应产生机制试验研究[J]. 岩石力学与工程学报,2021,40(12):2377−2391. doi: 10.13722/j.cnki.jrme.2021.0340

    WANG Jiachen,WANG Zhaohui,TANG Yuesong,et al. Experimental study on mining-induced dynamic load of main roof in deeply buried thick coal seam with weakly consolidated thin bed rock[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2377−2391. doi: 10.13722/j.cnki.jrme.2021.0340
    [5]
    杨俊哲,张 彬,付兴玉,等. 浅埋薄基岩工作面水砂溃涌通道形成机理[J]. 煤炭学报,2020,45(12):4144−4153.

    YANG Junzhe,ZHANG Bin,FU Xingyu,et al. Formation mechanism of water and sand inrush channel in shallow buried bedrock face[J]. Journal of China Coal Society,2020,45(12):4144−4153.
    [6]
    朱 伟,滕永海,唐志新. 潞安矿区综采裂隙带发育高度规律实测研究[J]. 煤炭科学技术,2017,45(7):167−171.

    ZHU Wei,TENG Yonghai,TANG Zhixin. In-site study on development rule of fractured zone height by fully-mechanized mining in Lu’an Minefield[J]. Coal Science and Technology,2017,45(7):167−171.
    [7]
    戴华阳,廖孟光,孟宪营,等. 峰峰矿区九龙矿水库下采煤安全性分析[J]. 煤炭学报,2014,39(S2):295−300.

    DAI Huayang,LIAO Mengguang,MENG Xianying,et al. Analysis of the security of mining under the reservoir in Jiulong Coal Mine of Fengfeng Mining Area[J]. Journal of China Coal Society,2014,39(S2):295−300.
    [8]
    浦 海,张 柬. 断层影响下顶板突水特性的数值模拟研究[J]. 采矿与安全工程学报,2010,27(3):421−424. doi: 10.3969/j.issn.1673-3363.2010.03.024

    PU Hai,ZHANG Jian. Numerical simulation of water inrush from coal roof affected by fault[J]. Journal of Mining & Safety Engineering,2010,27(3):421−424. doi: 10.3969/j.issn.1673-3363.2010.03.024
    [9]
    张 杰,杨 涛,索永录,等. 基于隔水土层失稳模型的顶板突水致灾预测研究[J]. 煤炭学报,2017,42(10):2718−2724.

    ZHANG Jie,YANG Tao,SUO Yonglu,et al. Roof water-inrush disaster forecast based on the model of aquiclude instability[J]. Journal of China Coal Society,2017,42(10):2718−2724.
    [10]
    杨 涛,张 杰,林海飞,等. 隔水土层孔隙水压畸变与顶板突水灾变的时空响应特征模拟研究[J]. 采矿与安全工程学报,2021,38(2):317−325.

    YANG Tao,ZHANG Jie,LIN Haifei,et al. Spatial-temporal characteristics simulation of pore water pressure in aquiclude and roof water inrush[J]. Journal of Mining & Safety Engineering,2021,38(2):317−325.
    [11]
    曾一凡,李 哲,宫厚建,等. 顶板风化基岩含水层富水特征与涌(突)水危险性预测[J]. 煤炭工程,2018,50(2):100−104.

    ZENG Yifan,LI Zhe,GONG Houjian,et al. Water abundance characteristics in aquifer of weathered roof bedrock and prediction on water inrush risk[J]. Coal Engineering,2018,50(2):100−104.
    [12]
    吕广罗,田刚军,张 勇,等. 巨厚砂砾岩含水层下特厚煤层保水开采分区及实践[J]. 煤炭学报,2017,42(1):189−196.

    LYU Guangluo,TIAN Gangjun,ZHANG Yong,et al. Division and practice of water-preserved mining in ultra-thick coal seam under ultra-thick sandy conglomerate aquifer[J]. Journal of China Coal Society,2017,42(1):189−196.
    [13]
    王海龙,陈绍杰,郭惟嘉. 水砂突涌试验系统研制与应用[J]. 采矿与安全工程学报,2019,36(1):72−79.

    WANG Hailong,CHEN Shaojie,GUO Weijia. Development and application of test system for water-sand inrush[J]. Journal of Mining & Safety Engineering,2019,36(1):72−79.
    [14]
    郭惟嘉,王海龙,陈绍杰,等. 采动覆岩涌水溃砂灾害模拟试验系统研制与应用[J]. 岩石力学与工程学报,2016,35(7):1415−1422.

    GUO Weijia,WANG Hailong,CHEN Shaojie,et al. Development and application of simulation test system for water and sand inrush across overburden fissures due to coal mining[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1415−1422.
    [15]
    许延春,杜明泽,李江华,等. 水压作用下防砂安全煤岩柱失稳机理及留设方法[J]. 煤炭学报,2017,42(2):328−334.

    XU Yanchun,DU Mingze,LI Jianghua,et al. Instability mechanism and design method of coal and rock pillar under water pressure[J]. Journal of China Coal Society,2017,42(2):328−334.
    [16]
    张建明,唐志成,刘泉声. 点荷载强度指数估算与岩浆岩的单轴压缩强度的关系[J]. 岩土力学,2015,36(S2):595−602.

    ZHANG Jianming,TANG Zhicheng,LIU Quansheng. Relation between point load index and uniaxial compressive strength for igneous rock[J]. Rock and Soil Mechanics,2015,36(S2):595−602.
    [17]
    和卢斌,付志亮,王 强,等. 岩石点荷载强度与单轴抗压强度线性关系试验[J]. 煤田地质与勘探,2014,42(3):68−73.

    HE Lubin,FU Zhiliang,WANG Qiang,et al. Linear relationship between point load strength and uniaxial compressive strength of rock[J]. Coal Geology & Exploration,2014,42(3):68−73.
    [18]
    GB/T 50218—2014, 工程岩体分级标准[S].
    [19]
    许延春,曹旭初,李江华,等. 赵固一矿基岩风化带阻隔水特征试验研究[J]. 煤炭科学技术,2016,44(1):178−182,195.

    XU Yanchun,CAO Xuchu,LI Jianghua,et al. Experiment study on water resistance and isolation features of base rock weathering zone in Zhaogu No. 1 Mine[J]. Coal Science and Technology,2016,44(1):178−182,195.
    [20]
    李日运,吴林峰. 岩石风化程度特征指标的分析研究[J]. 岩石力学与工程学报,2004,23(22):3830−3833. doi: 10.3321/j.issn:1000-6915.2004.22.018

    LI Riyun,WU Linfeng. Research on characteristic indexes of weathering intensity of rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(22):3830−3833. doi: 10.3321/j.issn:1000-6915.2004.22.018
    [21]
    武 强. 煤矿防治水手册[M]. 北京: 煤炭工业出版社, 2013.
    [22]
    梁 冰,李若尘,姜利国,等. 沉积岩矿物组成对其耐崩解性影响的试验研究[J]. 煤炭科学技术,2018,46(5):27−32. doi: 10.13199/j.cnki.cst.2018.05.005

    LIANG Bing,LI Ruochen,JIANG Liguo,et al. Experimental study on mineral composition of sedimentary rock and influence of durable disintegration[J]. Coal Science and Technology,2018,46(5):27−32. doi: 10.13199/j.cnki.cst.2018.05.005
    [23]
    柴肇云,张亚涛,张学尧. 泥岩耐崩解性与矿物组成相关性的试验研究[J]. 煤炭学报,2015,40(5):1188−1193. doi: 10.13225/j.cnki.jccs.2014.0897

    CHAI Zhaoyun,ZHANG Yatao,ZHANG Xueyao. Experimental investigations on correlationwith slake durability and mineral composition of mudstone[J]. Journal of China Coal Society,2015,40(5):1188−1193. doi: 10.13225/j.cnki.jccs.2014.0897
    [24]
    苏永华,赵明华,刘晓明. 软岩膨胀崩解试验及分形机理[J]. 岩土力学,2005,26(5):728−732. doi: 10.3969/j.issn.1000-7598.2005.05.010

    SU Yonghua,ZHAO Minghua,LIU Xiaoming. Research of fractal mechanism for swelling & collapse of soft rock[J]. Rock and Soil Mechanics,2005,26(5):728−732. doi: 10.3969/j.issn.1000-7598.2005.05.010
  • Related Articles

    [1]ZHANG Guibin, WANG Rongqiang, MA Junpeng, LYU Wenmao, ZHANG Wenquan, WANG Hailong. Study on solid-fluid coupling similarity simulation test of water-sand inrush during mining of shallow buried thin bedrock roof[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(6): 165-175. DOI: 10.12438/cst.2023-1227
    [2]LI Feng, YANG Shengli, LI Zhengdai, YANG Wenqiang, YANG Jinghu, CHEN Xiaolong. Experimental study on disaster of water-sand inrush and roof cuttingin working face with thin bedrock roof[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 125-133.
    [3]YANG Junzhe, WU Zuoqi, LI Hongjie, ZHANG Bin, JI Wenbo. Simulation test of water and sand burst in shallow and thin bedrock face and analysis of influencing factors[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(10): 1-8.
    [4]CHENG Hua, ZHOU Ruihe, YAO Zhishu, JU Xianbo, WANG Xiaojian. Study on shaft damage control technology of water inrush and sand burst in drilling process with thick topsoil and thin bedrock[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(4): 176-185. DOI: 10.13199/j.cnki.cst.2021.04.021
    [5]PU Hai, GUO Shiru, LIU Dejun, XU Junce, WANG Jian. Study on laws of water inrush and sand burst migration based on LBM-DEM coupling method[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(2): 206-216. DOI: 10.13199/j.cnki.cst.2021.02.024
    [6]REN Shengwen. Study on disaster of water and sand inrush of weakly cementedthick conglomerate on deep mining coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (9).
    [7]PENG Tao, FENG Xihui, LONG Liangliang, WANG Ying, NIU Chao, LIU Yingfeng. Study on mechanism of water inrush and sand inrush in mining of coal seam with thick overlying bedrock[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (7).
    [8]WANG Hai, WANG Xiaodong, CAO Zubao, XU Ganggang, YANG Dong. Mechanism and prevention technology of water inrush and sand inrush occurred in thawing process of mine freezing shaft wall[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (2).
    [9]Xu Yanchun Cao Xuchu Li Jianghua Li Kunqi Liu Zhonghua, . Experiment study on water resistance and isolation features of base rock weathering zone in Zhaogu No.1 Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (1).
    [10]Study Status and Outlook of Risk Evaluation on Water Inrush and Sand Inrush Mechanism of Excavation and Mining[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (11).
  • Cited by

    Periodical cited type(6)

    1. 邓军,李鑫,王凯,王伟峰,闫军,汤宗情,康付如,任帅京. 矿井火灾智能监测预警技术近20年研究进展及展望. 煤炭科学技术. 2024(01): 154-177 . 本站查看
    2. 易欣,李煜晗,白祖锦,任瑶,王兴. 有芯热管对高温煤堆温度场的影响实验研究. 煤矿安全. 2024(09): 22-29 .
    3. 李金虎,黄珏洁,陆伟,徐天硕,汪洋. 煤中高活性含碳固体自由基与煤自燃反应性的相关关系. 煤炭科学技术. 2024(12): 127-142 . 本站查看
    4. 赵海波. 外在水分对长焰煤孔隙结构及自燃特性的影响研究. 煤矿安全. 2023(05): 205-210 .
    5. 王东民,闫建党,王鹏斐,王晓乐,蔡国斌,黄渊,郑学召. 基于复合指标气体法的水浸清洁煤体自燃预警预报研究. 煤炭技术. 2023(10): 129-133 .
    6. 刘恒. 水浸作用对煤孔隙结构及吸附/解吸特征的影响. 山西焦煤科技. 2023(11): 34-38 .

    Other cited types(2)

Catalog

    Article views (178) PDF downloads (83) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return