Citation: | LIU Shumin,LI Xuelong,WANG Dengke. Advanced characterization of coal microstructure before and after liquid nitrogen cold soaking[J]. Coal Science and Technology,2023,51(5):93−102. DOI: 10.13199/j.cnki.cst.2021-1192 |
With the development of coal seam fracturing technology, promote the gas extraction by liquid nitrogen cold soaking fracturing coal has attracted widespread attention. In order to study the effect of liquid nitrogen cold soaking on the microstructures of different coals (lean coal, fat coal and anthracite) before and after liquid nitrogen cold soaking, the scanning electron microscopy (SEM), pore size distribution instrument and physical adsorption instrument were jointly characterized. The influence of liquid nitrogen cold soaking on the distribution of pore volume and specific surface area of different coal samples was comparatively analyzed. The results show that the thermal stress generated during the liquid nitrogen cold soaking destroys the microstructure of the coal or causes the initiation of micro-cracks, After liquid nitrogen cold soaking, the total pore volume and specific surface area of coal samples increase. The total pore volume growth rate of fat coal is the lowest, followed by anthracite, and the lean coal’s is the highest. The volume of micropores, micropores, meso-pores and macropores/fractures in the coal samples increase. cold leaching of liquid nitrogen causes macropores to pass through and form macropores/fissures in coal samples, resulting in the reduction of pore volume of macropores. After liquid nitrogen cold soaking, the pore specific surface area of each coal sample concentrate in the range of 10 − 100 nm, and has obvious peak characteristics. Liquid nitrogen cold soaking can increase the adsorption capacity of lean coal, fat coal and anthracite coal samples, and the adsorption capacity difference is the largest in the middle high pressure region (0.4 < p/p0 < 1.0). Liquid nitrogen cold soaking can effectively transform the internal microstructure of different coals. The research results are helpful to reveal the spatial expansion and connectivity of macroscopic and microscopic pore fractures in coal reservoirs during liquid nitrogen cracking.
[1] |
李树刚,钱鸣高. 我国煤层与甲烷安全共采技术的可行性[J]. 科技导报,2000,18(6):39−41.
LI Shugang,QIAN Minggao. Simultaneous safety extraction of coal and coal-bed methane in China[J]. Science and Technology Review,2000,18(6):39−41.
|
[2] |
袁 亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6.
YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.
|
[3] |
谢和平,周宏伟,薛东杰,等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报,2012,37(4):535−542.
XIE Heping,ZHOU Hongwei,XUE Dongjie,et al. Research and consideration on deep coal mining and critical mining depth[J]. Journal of China Coal Society,2012,37(4):535−542.
|
[4] |
司瑞江,李飞鹏,赵璐璐,等. 区段大煤柱水力压裂切顶护巷技术研究[J]. 煤炭科学技术,2020,48(7):282−287.
SI Ruijiang,LI Feipeng,ZHAO Lulu,et al. Research on hydraulic fracturing roof cutting and roadway protection technology with wide sublevel coal pillar[J]. Coal Science and Technology,2020,48(7):282−287.
|
[5] |
郑春山,林柏泉,杨 威,等. 水力割缝钻孔喷孔机制及割缝方式的影响[J]. 煤矿安全,2014,45(1):5−8,12.
ZHENG Chunshan,LIN Baiquan,YANG Wei,et al. Hole-spraying mechanism of hydraulic slotting drilling and the influnence of slotting mode[J]. Safety in Coal Mines,2014,45(1):5−8,12.
|
[6] |
李 冰,刘见宝,任建刚,等. 水力冲孔对煤微观孔隙和结构成分影响的试验研究[J]. 煤炭科学技术,2021,49(8):131−138.
LI Bing,LIU Jianbao,REN Jiangang,et al. Experimental study of influence of hydraulic punching on microscopic pores and structural components of coal[J]. Coal Science and Technology,2021,49(8):131−138.
|
[7] |
王耀锋,何学秋,王恩元,等. 水力化煤层增透技术研究进展及发展趋势[J]. 煤炭学报,2014,39(10):1945−1955.
WANG Yaofeng,HE Xueqiu,WANG Enyuan,et al. Research progress and development tendency of the hydraulic technology for increasing the permeability of coal seams[J]. Journal of China Coal Society,2014,39(10):1945−1955.
|
[8] |
王 磊,梁卫国. 超临界CO2压裂下煤岩体裂缝扩展规律试验研究[J]. 煤炭科学技术,2019,47(2):65−70.
WANG Lei,LIANG Weiguo. Experimental study on crack propagation of coal-rock mass under supercritical CO2 fracturing[J]. Coal Science and Technology,2019,47(2):65−70.
|
[9] |
YAN F Z,LIN B Q,ZHU C,et al. Experimental investigation on anthracite coal fragmentation by high-voltage electrical pulses in the air condition: Effect of breakdown voltage[J]. Fuel,2016,183(11):583−592.
|
[10] |
MCDANIEL B W, GRUNDMANN S R, KENDRICK W D, et al. Field applications of cryogenic nitrogen as a hydraulic fracturing fluid[C]// SPE Annual Technical Conference and Exhibition, 1997, Delta: 561−572.
|
[11] |
王登科,张 平,刘淑敏,等. 温度冲击下煤层内部孔缝结构演化特征实验研究[J]. 煤炭学报,2018,43(12):3395−3403.
WANG Dengke,ZHANG Ping,LIU Shumin,et al. Experimental study on evolutionary characteristics of pore-fissure structure in coal seam under temperature impact[J]. Journal of China Coal Society,2018,43(12):3395−3403.
|
[12] |
CHA M S,YIN X L,KNEAFSEY T,et al. Cryogenic fracturing for reservoir stimulation–Laboratory studies[J]. Journal of Petroleum Science and Engineering,2014,124:436−450. doi: 10.1016/j.petrol.2014.09.003
|
[13] |
任韶然,范志坤,张 亮,等. 液氮对煤岩的冷冲击作用机制及试验研究[J]. 岩石力学与工程学报,2013,32(S2):3790−3794.
REN Shaoran,FAN Zhikun,ZHANG Liang,et al. Mechanisms and experimental study of thermal-shock effect on coal-rock using liquid nitrogen[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(S2):3790−3794.
|
[14] |
王 乔,赵 东,冯增朝,等. 基于CT扫描的煤岩钻孔注液氮致裂试验研究[J]. 煤炭科学技术,2017,45(4):149−154.
WANG Qiao,ZHAO Dong,FENG Zengchao,et al. Experimental study on fracturing of coal by injection liquid nitrogen in drill based on CT scanning[J]. Coal Science and Technology,2017,45(4):149−154.
|
[15] |
张春会,耿 哲,徐 刚,等. 液氮冻融循环作用下饱水煤样力学特性试验研究[J]. 煤炭科学技术,2020,48(10):218−224.
ZHANG Chunhui,GENG Zhe,XU Gang,et al. Experimental study on mechanical properties of saturated coal sansubjected to freezing-thawing cycles of liquid nitrogen[J]. Coal Science and Technology,2020,48(10):218−224.
|
[16] |
周 动,冯增朝,赵 东,等. 煤吸附瓦斯细观特性研究[J]. 煤炭学报,2015,40(1):98−102.
ZHOU Dong,FENG Zengchao,ZHAO Dong,et al. Study on mesoscopic characteristics of methane adsorption by coal[J]. Journal of China Coal Society,2015,40(1):98−102.
|
[17] |
王登科,魏建平,尹光志. 复杂应力路径下含瓦斯煤渗透性变化规律研究[J]. 岩石力学与工程学报,2012,31(2):303−309.
WANG Dengke,WEI Jianping,YIN Guangzhi. Investigation on change rule of permeability of coal containing gas under complex stress paths[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(2):303−309.
|
[18] |
CAI Y,LIU D,PEN Z,et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel,2013,103(1):258−268.
|
[19] |
王登科,张 平,浦 海,等. 温度冲击下煤体裂隙结构演化的显微CT实验研究[J]. 岩石力学与工程学报,2018,37(10):2243−2252.
WANG Dengke,ZHANG Ping,PU Hai,et al. Experimental research on cracking process of coal under temperature variation with industrial micro-CT[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(10):2243−2252.
|
[20] |
LIU S,WANG D,YIN G,et al. Experimental study on the microstructure evolution laws in coal seam affected by temperature impact[J]. Rock Mechanics and Rock Engineering,2020,53(3):1359−1374. doi: 10.1007/s00603-019-01978-3
|
[21] |
傅雪海, 秦 勇, 张万红, 等. 基于煤层气运移的煤孔隙分形分类及自然分类研究[J], 科学通报, 2005, 50(S1): 51-55.
FU Xuehai, QIN Yong, ZHANG Wanhong, et al. Fractal classification and natural classification of coal holes based on coalbed methane migration[J]. Chinese Science Bulletin, 2005, 50(S1): 51−55.
|
[22] |
赵志根,唐修义. 低温氮吸附法测试煤中微孔隙及其意义[J]. 煤田地质与勘探,2001,29(5):28−30.
ZHAO Zhigen,TANG Xiuyi. Study of micropore in coal by low-temperature nitrogen adsorption method and its significance[J]. Coal Geology and Exploration,2001,29(5):28−30.
|
[23] |
降文萍,宋孝忠,钟玲文. 基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J]. 煤炭学报,2011,36(4):609−614.
JIANG Wenping,SONG Xiaozhong,ZHONG Lingwen. Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J]. Journal of China Coal Society,2011,36(4):609−614.
|
[24] |
周俊义,赵 宇,于弘奕. 构造煤的孔隙结构实验研究[J]. 煤矿安全,2016,47(7):5−8,13.
ZHOU Junyi,ZHAO Yu,YU Hongyi. Experimental study on pore structure of tectonic coal[J]. Safety in Coal Mines,2016,47(7):5−8,13.
|
[25] |
王 凯,乔 鹏,王壮森,等. 基于二氧化碳和液氮吸附、高压压汞和低场核磁共振的煤岩多尺度孔径表征[J]. 中国矿业,2017,26(4):146−152.
WANG Kai,QIAO Peng,WANG Zhuangsen,et al. Multiple scale pore size characterization of coal based on carbon dioxide and liquid nitrogen adsorption, high-pressure mercury intrusion and low field nuclear magnetic resonance[J]. China Mining Magazine,2017,26(4):146−152.
|
[26] |
胡宝林,车 遥,杨 起,等. 鄂尔多斯盆地煤储层低温氮等温吸附特征分析[J]. 煤田地质与勘探,2003,31(2):20−23.
HU Baolin,CHE Yao,YANG Qi,et al. Analyses on cryogenic nitrogen isothermal adsorption characteristics of coal reservoirs in the Ordos Basin[J]. Coal Geology and Exploration,2003,31(2):20−23.
|
[27] |
蔡承政,李根生,黄中伟,等. 液氮冻结条件下岩石孔隙结构损伤试验研究[J]. 岩土力学,2014,35(4):965−971.
CAI Chengzheng,LI Gensheng,HUANG Zhongwei,et al. Experiment study of rock porous structure damage under cryogenic nitrogen freezing[J]. Rock and Soil Mechanics,2014,35(4):965−971.
|
[28] |
CAI C Z,GAO F,LI G S,et al. Evaluation of coal damage and cracking characteristics due to liquid nitrogen cooling on the basis of the energy evolution laws[J]. Journal of Natural Gas Science and Engineering,2016,29:30−36. doi: 10.1016/j.jngse.2015.12.041
|
[29] |
周科平,李杰林,许玉娟,等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报,2012,31(4):731−737.
ZHOU Keping,LI Jielin,XU Yujun,et al. Experimental study of NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(4):731−737.
|
[30] |
周科平,张亚民,李杰林,等. 冻融花岗岩细观损伤演化的核磁共振[J]. 中南大学学报(自然科学版),2013,44(8):3384−3389.
ZHOU Keping,ZHANG Yamin,LI Jielin,et al. Granite microstructure deterioration characteristic under condition of freezing-thawing based on NMR technology[J]. Journal of Central South University (Science and Technology),2013,44(8):3384−3389.
|
[31] |
QIN L,ZHAI C,LIU S M,et al. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw – A nuclear magnetic resonance investigation[J]. Fuel,2017,194:102−114. doi: 10.1016/j.fuel.2017.01.005
|
[32] |
康 健. 岩石热破裂的研究及应用[M]. 大连: 大连理工大学出版社, 2008: 32.
|
[33] |
霍多特 B B. 煤与瓦斯突出[M]. 北京: 煤炭工业出版社, 1966: 5.
|
[34] |
NIE B S,LIU X F,YANG L L,et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel,2015,158:908−917. doi: 10.1016/j.fuel.2015.06.050
|
[35] |
ZHAI C,QIN L,LIU S M,et al. Pore structure in coal: pore evolution after cryogenic freezing with cyclic liquid nitrogen injection and its implication on coalbed methane extraction[J]. Energy and Fuels,2016,30(7):6009−6020. doi: 10.1021/acs.energyfuels.6b00920
|
[1] | ZHANG Xiaoyu, LI Bobo, LI Jianhua, JIA Lidan, DING Yunna, SONG Haosheng. Anisotropic permeability model considering gas and water adsorption and stress[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(4): 280-290. DOI: 10.12438/cst.2023-1943 |
[2] | WANG Gang, WANG Mingzhen, XIAO Zhiyong, SUN Xiaoxiang, JIA Wenwen, JIANG Feng, ZHENG Chengcheng. Study on coal permeability evolution considering adsorptive deformation characteristics of matrix[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(12): 193-203. DOI: 10.12438/cst.2023-1582 |
[3] | CHEN Shuai, LI Bobo, LI Jianhua, REN Chonghong. Experimental study on shale apparent permeability model under different stress conditions[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(7): 169-178. |
[4] | ZOU Yinhui, CHENG Bo. Experimental study on mapping mechanism of loading process of rock and coal and gas permeability[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (11). |
[5] | LI Xuecheng, FENG Zengchao, GUO Jizhe, LIANG Yuankai, BAI Jun, WANG Chen. Study on influence laws of temperature and stress on sandstone permeability[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4). |
[6] | LIU Xiao, ZHANG Fan, MA Geng. Study on influence of hydraulic flushed borehole on evolution law ofcoal reservoir permeability[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (11). |
[7] | CHEN Hao, QIN Yong, LI Guizhong, CHEN Zhenhong, GENG Meng, DENG Ze, TIAN Wenguang, SANG Guangjie. Study on stress sensitivity of coal rock permeability based on pulse-decay method[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (6). |
[8] | Ni Xiaoming Gao Xiang Li Zheyuan, . Millimeter sized crack network reconstruction and permeability prediction of coal and rock[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (8). |
[9] | WEI Jian-ping LI Ming-zhu WANG Deng-ke QIN Heng-jie, . Experimental Research on Sensibility of Coal Samples Permeability Under Confining Pressure[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (6). |
[10] | Adsorption Role Affected to Gas Permeable Law of Coal Mass[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (9). |
1. |
吴兵,黄来胜,李杨,李超,雷柏伟. 液氮冻结和冻融条件下煤体力学特性及裂隙演化教学实验设计. 实验技术与管理. 2024(03): 210-216 .
![]() | |
2. |
王浩,赵耀江,孙晓元. 液氮溶浸时间对原煤力学及破坏形式的影响. 煤矿安全. 2024(08): 25-30 .
![]() |