Advance Search
TAO Chuanqi,WANG Yanbin,NI Xiaoming,et al. Shale gas geological characteristics and exploration potential of lower permian Taiyuan Formation in Linxing Area[J]. Coal Science and Technology,2023,51(5):140−148. DOI: 10.13199/j.cnki.cst.2021-1073
Citation: TAO Chuanqi,WANG Yanbin,NI Xiaoming,et al. Shale gas geological characteristics and exploration potential of lower permian Taiyuan Formation in Linxing Area[J]. Coal Science and Technology,2023,51(5):140−148. DOI: 10.13199/j.cnki.cst.2021-1073

Shale gas geological characteristics and exploration potential of lower permian Taiyuan Formation in Linxing Area

Funds: 

National Science and Technology Major Project (2016ZX05066); Doctoral Research Fund Project of Liaoning Shihua University (2021XJJL-025)

More Information
  • Received Date: October 15, 2021
  • Available Online: May 07, 2023
  • In order to reveal the geological characteristics and exploration potential of shale gas in Taiyuan Formation in Linxing area, eastern Ordos Basin, taking organic-rich mud shale as the research object, the distribution rules of mud shale cumulative thickness and single layer maximum thickness were found out based on field drilling and logging geological data. The organic geochemistry, physical properties, X-ray diffraction and isothermal adsorption experiments were carried out for shales, and the accumulation conditions and exploration potential of shale gas were studied. The results show that the distribution of mud shale in Taiyuan Formation in Linxing area is stable, the cumulative thickness is 10-50 m, the average thickness is 30 m, and the maximum thickness of single layer is 5−25 m. The Organic matter abundance is high, TOC content is 0.26%-12%, with an average value of 3.81%. Organic matter type is mainly II and III kerogen, and peak temperature of pyrolysis is between 443 ℃ and 576 ℃. The thermal maturity of shale near zijinshan rock mass increases obviously. The pores and fissures of nanoscale–micron scale are developed in shales. The pores of organic matter are mostly round, oval and honeycomb. Other types of pores such as the dissolution pores of clastic minerals are developed. The microcracks in mineral particles, the edge of clastic particles and the internal organic matter are relatively developed. The content of brittle minerals such as quartz and feldspar are 45%-65%, and the content of clay minerals is 28%-62%, which are mostly non-expansive minerals. The variation range of gas content in shale is large, ranging from 0.08 m3/t to 7.3 m3/t, with an average value of 1.41 m3/t. There is a significant positive correlation between gas content and TOC. Considering the factors such as shale thickness, organic matter abundance and thermal evolution degree, the central and northern shale in Linxing area has large thickness and high TOC content. The mineral assemblage is conducive to reservoir reconstruction and is a favorable area for shale gas exploration. Compared with marine shale gas exploration area in Sichuan Basin, Taiyuan Formation shale in Linxing area has the characteristics of shallow burial depth and low gas content. In the exploration and development of oil and gas resources, it is necessary to pay attention to the joint exploration and development of sandstone gas and coalbed methane in coal measure strata.

  • [1]
    贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发,2017,44(1):1−11. doi: 10.1016/S1876-3804(17)30002-2

    JIA Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory[J]. Petroleum Exploration and Development,2017,44(1):1−11. doi: 10.1016/S1876-3804(17)30002-2
    [2]
    邹才能,赵 群,张国生,等. 能源革命: 从化石能源到新能源[J]. 天然气工业,2016,36(1):1−10.

    ZOU Caineng,ZHAO Qun,ZHANG Guosheng,et al. Energy revolution: From a fossil energy era to a new energy era[J]. Natural Gas Industry,2016,36(1):1−10.
    [3]
    国土资源部油气资源战略研究中心. 页岩气资源动态评价[M]. 北京: 地质出版社, 2017.

    Strategic research center of oil and gas resources, Ministry of land and Resources. Dynamic evaluation of shale gas resources[M]. Beijing: Geological Publishing House, 2017.
    [4]
    邹才能, 赵 群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1−14.

    ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China [J]. Natural Gas Industry. 2021, 41(1): 1−14.
    [5]
    董大忠,邱 振,张磊夫,等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报,2021,39(1):29−45.

    DONG Dazhong,QIU Zhen,ZHANG Leifu,et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica,2021,39(1):29−45.
    [6]
    郭少斌, 王义刚. 鄂尔多斯盆地石炭系本溪组页岩气成藏条件及勘探潜力[J]. 石油学报, 2013, 34(3): 445−452.

    GUO Shaobin, WANG Yigang. Shale gas accumulation conditions and exploration potential of Carboniferous Benxi Formation in Ordos Basin [J]. Acta Petrolei Sinica. 2013, 34(3): 445−452.
    [7]
    张曼婷,付 炜,姜秉仁,等. 黔北煤田上二叠统龙潭组煤系页岩气储层特征与勘探潜力评价[J]. 煤炭科学技术,2022,50(8):133−139.

    ZHANG Manting,FU Wei,JIANG Bingren,et al. Shale gas reservoir characteristics and exploration potential analysis of Longtan Formation of the upper Permian Series in Qianbei Coalfield[J]. Coal Science and Technology,2022,50(8):133−139.
    [8]
    张晓明, 石万忠, 徐清海, 等. 四川盆地焦石坝地区页岩气储层特征及控制因素[J]. 石油学报, 2015, 36(8): 926−939, 953.

    ZHANG Xiaoming, SHI Wanzhong, XU Qinghai, et al. Reservoir characteristics and controlling factors of shale gas in Jiaoshiba area, Sichuan Basin [J]. Acta Petrolei Sinica. 2015, 36(8): 926−939, 953.
    [9]
    邹才能,赵 群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781−1796.

    ZOU Caineng,ZHAO Qun,DONG Dazhong,et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience,2017,28(12):1781−1796.
    [10]
    彭威龙, 胡国艺, 黄士鹏, 等. 天然气地球化学特征及成因分析: 以鄂尔多斯盆地东胜气田为例[J]. 中国矿业大学学报, 2017, 46(1): 74−84.

    PENG Weilong, HU Guoyi, HUANG Shipeng, et al. Natural gas geochemical characteristics and genetic analysis: A case study of the Dongsheng gas field in the Ordos basin of China [J]. Journal of China University of Mining & Technology. 2017, 46(1): 74−84.
    [11]
    郭本广, 许 浩, 孟尚志, 等. 临兴地区非常规天然气合探共采地质条件分析[J]. 中国煤层气, 2012, 9(4): 3−6.

    GUO Benguang, XU Hao, MENG Shangzhi, et al. Geology condition analysis for unconventional gas co-exploration and concurrent production in Linxing area [J]. China Coalbed Methane. 2012, 9(4): 3−6.
    [12]
    傅雪海,德勒恰提·加娜塔依,朱炎铭,等. 煤系非常规天然气资源特征及分隔合采技术[J]. 地学前缘,2016,23(3):36−40.

    FU Xuehai,Deleqiati,jianatayi,ZHU Yanming,et al. Resources characteristics and separated reservoirs’ drainage of conventional gas in coal measures[J]. Earth Science hrontiers,2016,23(3):36−40.
    [13]
    赵靖舟,王 力,孙兵华,等. 鄂尔多斯盆地东部构造演化对上古生界大气田形成的控制作用[J]. 天然气地球科学,2010,21(6):875−881.

    ZHAO Jingzhou,WANG Li,SUN Binghua,et al. Effect of structural evolution on the formation and distribution of upper paleozoic giant fields in the East Ordos Basin[J]. Natlral Gas Geoscience,2010,21(6):875−881.
    [14]
    谢英刚,秦 勇,叶建平,等. 临兴地区上古生界煤系致密砂岩气成藏条件分析[J]. 煤炭学报,2016,41(1):181−191.

    XIE Yinggang,QIN Yong,YE Jianping,et al. Accumulation conditions of tight gas in the Upper Paleozoic of Linxing Block[J]. Journal of China Coal Society,2016,41(1):181−191.
    [15]
    张 兵,徐文军,徐延勇,等. 鄂尔多斯盆地东缘临兴区块深部关键煤储层参数识别[J]. 煤炭学报,2016,41(1):87−93.

    ZHANG Bing,XU Wenjun,XU Yanyong,et al. Key parameters identification for deep coalbed methane Linxing block ofeastern Ordos Basin reservoir in Linxing block of eastern Ordos Basin[J]. Journal of China Coal Society,2016,41(1):87−93.
    [16]
    申 建,张春杰,秦 勇,等. 鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J]. 天然气地球科学,2017,28(3):479−487.

    SHEN Jian,ZHANG Chunjie,QIN Yong,et al. Effect factors on co-mining of sandstone gas and coalbed methane in coal series and threshold of parameter in Linxing block, Ordos Basin[J]. Natural Gas Geoscience,2017,28(3):479−487.
    [17]
    HOUSEKNECHT D W,WEESNER C M B. Rotational reflectance of dispersed vitrinite from the Arkoma Basin[J]. Organic Geochemistry,1997,26:191−206. doi: 10.1016/S0146-6380(96)00161-1
    [18]
    CARR A D,SNAPE C E,MEREDITH W,et al. The effect of water pressure on hydrocarbon generation reactions: some inferences from laboratory experiments[J]. Petroleum Geoscience,2009(15):17−26.
    [19]
    刘 玲, 王 烽, 汤达祯, 等. 临兴地区上古生界煤系烃源岩评价及排烃特征[J]. 特种油气藏, 2018, 25(1): 5−10.

    LIU Ling, WANG Feng, TANG Dazhen, et al. Evaluation on Upper Paleozoic Coal-bearing Source rocks and Hydrocarbon Expulsion Feature in Linxing region [J]. Special oil and gas reservoirs. 2018, 25(1): 5−10.
    [20]
    陈亚光, 朱崇林, 张 锟, 等. 鄂尔多斯盆地东缘上古生界煤系页岩气成藏地质条件[J]. 地质学刊, 2017, 41(1): 54−61.

    CHEN Yaguang, ZHU Chonglin, ZHANG Qun, et al. Shale gas accumulation conditions of the Upper Paleozoic coal measures in the eastern margin of the Ordos Basin [J]. Journal of Geology. 2017, 41(1): 54−61.
    [21]
    周 帅, 陈尚斌, 司庆红, 等. 鄂尔多斯盆地东缘太原组页岩气成藏特征[J]. 特种油气藏, 2016, 23(1): 38−43, 152−153.

    ZHOU Shuai, CHEN Shangbin, SI Qinghong, et al. Taiyuan shale gas accumulation characteristics in Eastern Ordos Basin [J]. Special oil and gas reservoirs. 2016, 23(1): 38−43, 152−153.
    [22]
    ROBERT G L,ROBERT M R,STEPHEN C R,et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research,2009,79(12):848−861. doi: 10.2110/jsr.2009.092
    [23]
    王香增,高胜利,高 潮. 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发,2014,41(3):294−304. doi: 10.1016/S1876-3804(14)60035-5

    WANG Xiangzeng,GAO Shengli,GAO Chao. Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China. Petroleum Exploration and Development[J]. Petroleum Exploration and Development,2014,41(3):294−304. doi: 10.1016/S1876-3804(14)60035-5
    [24]
    王 阳, 朱炎铭, 陈尚斌, 等. 湘西北下寒武统牛蹄塘组页岩气形成条件分析[J]. 中国矿业大学学报, 2013, 42(4): 586−594.

    WANG Yang, ZHU Yanming, CHEN Shangbin, et al. Formation conditions of shale gas in Lower Cambrian Niutitang formation, northwestern Hunan [J]. Journal of China University of Mining & Technology. 2013, 42(4): 586−594.
    [25]
    JARVIE D M,HILL R J,RUBLE T E,et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of nortlrcentral Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin,2007,91(4):475−499. doi: 10.1306/12190606068
    [26]
    马永生,蔡勋育,赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发,2018(4):1−14.

    MA Yongsheng,CAI Xunyu,ZHAO Peirong. Petroleum exploration and Development. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development,2018(4):1−14.
    [27]
    马新华, 谢 军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161−169.

    MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China. Petroleum Exploration and Development. 2018, 45(1): 161−169.
    [28]
    杨振恒, 魏志红, 何文斌, 等. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156−163.

    YANG Zhenheng, WEI Zhihong, HE Wenbin, et al. Characteristics and significance of onsite gas desorption from Wufeng-Longmaxi shales in southeastern Sichuan Basin [J]. Natural gas geoscience. 2017, 28(1): 156−163.
    [29]
    王朋飞, 姜振学, 韩 波, 等. 中国南方下寒武统牛蹄塘组页岩气高效勘探开发储层地质参数[J]. 石油学报, 2018, 39(2): 152−162.

    WANG Pengfei, JIANG Zhenxue, HAN Bo, et al. Reservoir geological parameters for efficient exploration and development of Lower Cambrian Niutitang Formation shale gas in South China [J]. Acta Petrolei Sinica. 2018, 39(2): 152−162.
    [30]
    王社教, 李登华, 李建忠, 等. 鄂尔多斯盆地页岩气勘探潜力分析[J]. 天然气工业, 2011, 31(12): 40−46, 125−126.

    WANG Shejiao, LI Denghua, LI Jianzhong, et al. Exploration potential of shale gas in the Ordos Basin [J]. Natural Gas Industry. 2011, 31(12): 40−46, 125−126.
    [31]
    唐 玄,张金川,丁文龙,等. 鄂尔多斯盆地东南部上古生界海陆过渡相页岩储集性与含气性[J]. 地学前缘,2016,23(2):147−157. doi: 10.13745/j.esf.2016.02.015

    TANG Xuan,ZHANG Jinchuan,DING Wenlong,et al. The reservoir property of the Upper Paleozoic marine-continental transitional shale and its gas bearing capacity in the Southeastern Ordos Basin[J]. Earth Science hrontiers,2016,23(2):147−157. doi: 10.13745/j.esf.2016.02.015

Catalog

    Article views (68) PDF downloads (22) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return