Advance Search
HAN Donghui,TANG Yuegang. Coal quality big data mining method and application based on SOM plus K-means two-stage clustering[J]. Coal Science and Technology,xxxx,xx(x): x−xx. DOI: 10.13199/j.cnki.cst.2021-1048
Citation: HAN Donghui,TANG Yuegang. Coal quality big data mining method and application based on SOM plus K-means two-stage clustering[J]. Coal Science and Technology,xxxx,xx(x): x−xx. DOI: 10.13199/j.cnki.cst.2021-1048

Coal quality big data mining method and application based on SOM plus K-means two-stage clustering

More Information
  • Available Online: May 14, 2023
  • In the process of developing and utilizing coal resources, a large amount of data is generated, and this data contains a lot of potentially valuable information. Making full use of the massive coal quality data accumulated in the process of coal development and utilization and mining the hidden information can generate new information and apply it to social production and construction. Areas with advantageous coal resources under different geological conditions will present a clustering phenomenon of data distribution. Four parameters of raw coal, including moisture (Mad), ash yield (Ad), volatile matter (Vdaf) and total sulfur (St, d) of the Taiyuan Formation in the six major coal fields in Shanxi Province are selected. the raw data is preprocessed using SOM+K- Means algorithm processing, and the read data is first processed based on the self-organizing neural network SOM, and the result obtained is used as the second stage k-means clustering analysis algorithm for further processing. According to the relevant national standards, the two types of data are displayed on the map according to the different quality of the raw coal, and the advantageous areas are delineated. The results of data mining show that the dominant areas of high-quality coal and medium quality coal account for 90.1% and 24.1% in the first and second clusters, respectively, indicating that the first cluster has higher quality coal than the second cluster. This proves the possibility of data mining algorithm coal quality big data analysis, expands the use of coal quality data, and further provides new ideas for the use and development of coal quality databases.

  • [1]
    马小平,代 伟. 大数据技术在煤炭工业中的研究现状与应用展望[J]. 工矿自动化,2018,44(1):50−54. doi: 10.13272/j.issn.1671-251x.2018.01.2017100022

    MA Xiaoping,DAI Wei. Research status and application prospect of big data technology in coal industry[J]. Industry and Mine Automation,2018,44(1):50−54. doi: 10.13272/j.issn.1671-251x.2018.01.2017100022
    [2]
    黄少芳,刘晓鸿. 地质大数据应用与地质信息化发展的思考[J]. 中国矿业,2016,25(8):166−170. doi: 10.3969/j.issn.1004-4051.2016.08.035

    HUANG Shaofang,LIU Xiaohong. Thinking about the application of geological big data and geological information development[J]. China Mining Magazine,2016,25(8):166−170. doi: 10.3969/j.issn.1004-4051.2016.08.035
    [3]
    李朝奎, 严雯英, 肖克炎, 地质大数据分析与应用模式研究[J]. 地质学刊, 2015, 39(3): 352-357.

    LI Chaokui, YAN Wenying, XIAO Keyan. Analysis and application mode of geological big data[J]. Journal of Geology, 2015, 39(3): 352-357.
    [4]
    俞立平. 大数据与大数据经济学[J]. 中国软科学,2013(7):177−183. doi: 10.3969/j.issn.1002-9753.2013.07.017

    YU Liping. Big Data and Big Data Economics[J]. China Soft Science,2013(7):177−183. doi: 10.3969/j.issn.1002-9753.2013.07.017
    [5]
    杨汝岱. 大数据与经济增长[J]. 财经问题研究,2018(2):10−13. doi: 10.19654/j.cnki.cjwtyj.2018.02.001-3

    YANG Rudai. Big data and economic growth[J]. Research on Financial and Economic Issues,2018(2):10−13. doi: 10.19654/j.cnki.cjwtyj.2018.02.001-3
    [6]
    杨学瑜,顾合英. 数据挖掘在选煤中的应用探讨[J]. 中国煤炭,2004,30(5):49−49. doi: 10.3969/j.issn.1006-530X.2004.05.021

    YANG Xueyu,GU Heying. Discussion on the Application of Data Mining in Coal Preparation[J]. China Coal,2004,30(5):49−49. doi: 10.3969/j.issn.1006-530X.2004.05.021
    [7]
    匡亚莉,邓建军,刘怀宇. 人工智能技术在选煤领域的应用[J]. 中国矿业大学学报,2001(6):558−563. doi: 10.3321/j.issn:1000-1964.2001.06.008

    KUANG Yali,DENG Jianjun,LIU Huaiyu. Application of artificial intelligence technology in the field of coal preparation[J]. Journal of China University of Mining & Technology,2001(6):558−563. doi: 10.3321/j.issn:1000-1964.2001.06.008
    [8]
    王若成. 基于数据挖掘的煤矿计算机安全监测体系建立[J]. 煤炭技术,2013,32(1):124−125. doi: 10.3969/j.issn.1008-8725.2013.01.059

    WANG Ruocheng. Computer-based Data Mining of Coal Mine Safety Monitoring System is Established[J]. Coal Technology,2013,32(1):124−125. doi: 10.3969/j.issn.1008-8725.2013.01.059
    [9]
    田玉山. 基于数据挖掘技术的煤矿远程监控系统研究[J]. 煤炭技术,2012,31(12):77−79. doi: 10.3969/j.issn.1008-8725.2012.12.037

    TIAN Yushan. Research on Remote Monitoring System of Coal Mine Based on Data Mining Technology[J]. Coal Technology,2012,31(12):77−79. doi: 10.3969/j.issn.1008-8725.2012.12.037
    [10]
    王艳亮. 基于数据挖掘的矿山企业智能安全监管系统模型研究[J]. 煤炭技术,2011,30(002):82−84.

    WANG Yanliang. Intelligent Model of Safety Control for Mining Enterprises Based on Data Mining Control[J]. Coal Technology,2011,30(002):82−84.
    [11]
    宫晓曼,滕荣华. 基于神经网络的数据挖掘在煤矿选煤中的应用[J]. 煤炭技术,2013(9):127−128. doi: 10.3969/j.issn.1008-8725.2013.09.063

    GONG Xiaoman,TENG Ronghua. Application of Data Mining Based on Neural Network for Coal Quality in Mine Area[J]. Coal Technology,2013(9):127−128. doi: 10.3969/j.issn.1008-8725.2013.09.063
    [12]
    吴 乔,罗 键,林金有. 煤炭企业生产成本联机分析处理和数据挖掘研究[J]. 工矿自动化,2014,40(4):10−14. doi: 10.13272/j.issn.1671-251x.2014.04.003

    WU Qiao,LUO Jian,LIN Jinyou. Research of online analytical processing and data mining for production cost of coal enterprises[J]. Industry and Mine Automation,2014,40(4):10−14. doi: 10.13272/j.issn.1671-251x.2014.04.003
    [13]
    KOHONEN T. Self-organized formation of topologically correct featuremaps[J]. Biological Cybernetics,1982,43(1):59−69. doi: 10.1007/BF00337288
    [14]
    芮小平,张立强. 基于SOM的多维信息可视化研究[J]. 应用基础与工程科学学报,2011(3):379−388. doi: 10.3969/j.issn.1005-0930.2011.03.004

    RUI Xiaoping,ZHANG Liqiang. Visualization of multi-dimensional information based on SOM[J]. Journal of Basic Science and Engineering,2011(3):379−388. doi: 10.3969/j.issn.1005-0930.2011.03.004
    [15]
    梁斌梅. 自组织特征映射神经网络的改进及应用研究. [J]计算机工程与应用, 2009(31): 137-138.

    LIANG Binmei. Study on improvement and application of self -organizing map neural network . Computer Engineering and Applications, 2009(31): 137-138.
    [16]
    周 欢,李广明,张高煜. SOM+K-means两阶段聚类算法及其应用[J]. 现代电子技术,2010,33(16):113−116. doi: 10.3969/j.issn.1004-373X.2010.16.035

    ZHOU Huan,LI Guangming,ZHANG Gaoyu. SOM+K-means Two-phase Clustering Algorithm and Its Application[J]. Modern Electronics Technique,2010,33(16):113−116. doi: 10.3969/j.issn.1004-373X.2010.16.035
    [17]
    KOHONEN T,Honkela T. Kohonennetwork[J]. Scholarpedia,2007,2(1):83−100.
    [18]
    KANUNGO, T, Mount, D. M, Netanyahu, N. S, . An efficient k-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 24(7): 0-892.
    [19]
    Hartigan J A,Wong M A. Algorithm AS 136: A k-means clustering Algorithm[J]. Journal of the Royal Statistical Society. Series C ( Applied Statistics),1979,28(1):100−108.
    [20]
    王学军, 王海生, 屈晓荣, 等. 山西省煤炭资源潜力评价[M]. 北京: 煤炭工业出版社, 2017.

    WANG Xuejun, WANG Haisheng, QU Xiaorong, et al. Evaluation of coal resource potential in Shanxi Province[M]. China Coal Industry Publishing House, 2017.
    [21]
    王学军, 张正喜, 王海生, 等. 山西煤质评价及煤的工业利用[M]. 北京: 煤炭工业出版社. 2014.

    WANG Xuejun, ZHANG Zhengxi, WANG Haisheng, et al. Evaluation of coal quality and industrial utilization of coal in Shanxi[M]. China Coal Industry Publishing House, 2014.
    [22]
    张发明. 一种融合SOM与K-means算法的动态信用评价方法及应用[J]. 运筹与管理,2014,23(6):186−192. doi: 10.3969/j.issn.1007-3221.2014.06.026

    ZHANG Faming. A dynamic credit evaluation method and application combining SOM and K-means algorithm[J]. Operations Research and Management Science,2014,23(6):186−192. doi: 10.3969/j.issn.1007-3221.2014.06.026
    [23]
    GB/T 15224.1-2018, 煤炭质量分级 第一部分: 灰分[S].
    [24]
    MTT849-2000煤的挥发分分级标准[S].
    [25]
    GB/T 15224.1-2010, 煤炭质量分级 第二部分: 硫分[S].
    [26]
    GB/T 15224.1-1994, 煤炭质量分级煤炭灰分分级[S].
    [27]
    许凯玉. 山西省煤炭资源洁净等级划分研究[D]. 北京: 中国矿业大学(北京), 2019.

    XU Kaiyu. Study on Classification of Clean Grade of Coal Resources in Shanxi Province[D]. China University of Mining & Technology, Beijing, 2019.
    [28]
    杨淑婷,唐跃刚,解锡超,等. 煤炭资源洁净等级评价研究[J]. 洁净煤技术,2011,17(1):5−8,11. doi: 10.3969/j.issn.1006-6772.2011.01.002

    YANG Shuting,TANG Yuegang,XIE Xichao,et al. Research on clean potential assessment of coal resources[J]. Clean Coal Technology,2011,17(1):5−8,11. doi: 10.3969/j.issn.1006-6772.2011.01.002
    [29]
    杨淑婷. 中国煤炭资源洁净潜势评价研究[D]. 北京: 中国矿业大学(北京), 2015.

    YANG Shuting. Cleaness Potential Evaluation Study on China Coal Resource[D]. China University of Mining & Technology, Beijing, 2015.
    [30]
    陈 鹏. 中国煤中硫的赋存特征及脱硫[J]. 煤炭转化,1994,017(2):1−9.

    CHEN Peng. The Occurrence Characteristics and Desulfurization of Sulfur in Chinese Coal[J]. Coal Conversion,1994,017(2):1−9.
    [31]
    邵龙义等. 山西省石炭二叠纪含煤地层沉积环境与聚煤规律研究[R]. 2011.

    SHAO Longyi. Study on sedimentary environment and coal accumulation law of Carboniferous Permian coal bearing strata in Shanxi Province[R]. 2011.
    [32]
    唐跃刚,程爱国,王海生,等. 山西省太原组和山西组煤质特征分析[J]. 煤炭科学技术,2013,41(7):10−15.

    TANG Yuegang,CHEN Aiguo,WANG Haisheng,et al. Coal Quality Characteristic Analysis of Taiyuan Formation and Shanxi Formation in Shanxi Province[J]. Coal Science & Technology,2013,41(7):10−15.
    [33]
    解锡超,张正喜,唐跃刚,等. 山西省太原组和山西组煤的煤岩特征分析[J]. 中国煤炭地质,2011,23(8):66−69. doi: 10.3969/j.issn.1674-1803.2011.08.16

    XIE Xichao,ZHANG Zhengxi,TANG Yuegang. Taiyuan and Shanxi Formations Coal Petrologic Feature Analyses in Shanxi Province[J]. Coal Geology of China,2011,23(8):66−69. doi: 10.3969/j.issn.1674-1803.2011.08.16
    [34]
    解锡超,张庆辉,唐跃刚等. 山西太原组和山西组煤类分布特征及变质作用分析[J]. 中国煤炭地质,2011,23(8):78−81. doi: 10.3969/j.issn.1674-1803.2011.08.19

    XIE Xichao,ZHANG Zhengxi,TANG Yuegang. Taiyuan and Shanxi Formations Coal Rank Distribution and Metamorphism Analysis in Shanxi Province[J]. Coal Geology of China,2011,23(8):78−81. doi: 10.3969/j.issn.1674-1803.2011.08.19
  • Cited by

    Periodical cited type(1)

    1. 赵文,倪吉伦,李玉景,陈立伟,王广宇. 三轴围压下煤冲击破坏特征及数值模拟. 矿业安全与环保. 2024(06): 122-129 .

    Other cited types(0)

Catalog

    Article views (73) PDF downloads (29) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return