WU Guoqing,MA Yanlong. Research on the interpretation method of channel waves for various abnormal bodies in geologically transparent working faces[J]. Coal Science and Technology,2023,51(5):149−160
. DOI: 10.13199/j.cnki.cst.2021-1016Citation: |
WU Guoqing,MA Yanlong. Research on the interpretation method of channel waves for various abnormal bodies in geologically transparent working faces[J]. Coal Science and Technology,2023,51(5):149−160 . DOI: 10.13199/j.cnki.cst.2021-1016 |
The transparency of mine geology is a new requirement for safe and efficient mining of coal mines. For working faces with complex geological conditions, channel wave detection technology is one of the commonly used geophysical prospecting methods. If there are multiple geological anomalies on the working face, its attributes cannot be accurately determined. Distinguish and explain. Taking a working face in Yangquan, Shanxi as an example, a three-dimensional wave field simulation was carried out on a working face including faults, collapsed columns, thin coal belts, and deflection. Analysis of dispersion characteristics; combined with the numerical model of the longitudinal wave amplitude and velocity, shear wave amplitude and velocity, high-frequency groove wave amplitude and velocity, and low-frequency groove wave amplitude and velocity 8 types of CT inversion imaging, the fault, collapse column, thin different response characteristics of four geological anomalies, coal belt and flexure, on channel wave attributes. The results show that: ①The main frequency and velocity of the channe wave anomaly caused by the fault is basically the same as that of the coal seam without geological anomaly. The amplitude of shear wave, high frequency and low frequency channe wave can significantly identify the fault, and the speed of shear wave, high frequency channe wave and low frequency channe wave can be compared. Significantly identify faults, the longitudinal wave amplitude and longitudinal wave velocity cannot effectively identify the fault; ②The single shot characteristics of the collapsed column are characterized by low-order weakening and high-order enhancement. The amplitude of shear wave, high frequency, and low frequency channe wave can significantly identify the collapsed column, shear wave, and high frequency. The frequency slot wave velocity can identify the collapse column more significantly, while the longitudinal wave amplitude, longitudinal wave velocity and low frequency slot wave velocity cannot effectively identify the collapse column; ③The main frequency of the thin coal belt is basically unchanged, the speed is reduced, the high frequency slot wave amplitude and velocity, low frequency The amplitude and velocity of the channe wave can distinguish thin coal belts, the amplitude of longitudinal wave and transverse wave can distinguish thin coal belts significantly, and the amplitude of longitudinal wave and transverse wave cannot effectively identify thin coal belts; ④The amplitude of the deflection spectrum is enhanced, and the high frequency channe The wave amplitude and the low-frequency groove wave amplitude can distinguish the deflection more significantly, and the other properties of the groove wave are not obvious in the recognition of the deflection. According to the response characteristics of different geological anomalies on single shot, frequency dispersion, frequency spectrum and wavefield CT imaging, the geological recognition of channe wave anomalies is realized, and the shape, location and size of various geological anomalies are accurately explained, which is geologically transparent. The establishment of the chemical working face laid the “material” foundation.
[1] |
彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345.
PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.
|
[2] |
程建远,王保利,范 涛,等. 煤矿地质透明化典型应用场景及关键技术[J]. 煤炭科学技术,2022,50(7):1−12.
CHENG Jianyuan,WANG Baoli,FAN Tao,et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology,2022,50(7):1−12.
|
[3] |
袁 亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.
YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.
|
[4] |
程建远,聂爱兰,张 鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141.
CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141.
|
[5] |
薛国强,李 貅,戚志鹏,等. 瞬变电磁拟地震子波宽度压缩研究[J]. 地球物理学报,2011,54(5):1384−1390.
XUE Guoqiang,LI Xiu,QI Zhipeng,et al. Study of sharping the TEM pseudo-seismic wave-form[J]. Chinese Journal Geophysics,2011,54(5):1384−1390.
|
[6] |
陆 斌,程建远,胡继武,等. 采煤机震源有效信号提取及初步应用[J]. 煤炭学报,2013,38(12):2202−2207.
LU Bin,CHENG Jianyuan,HU Jiwu,et al. Shearer source signal extraction and preliminary application[J]. Journal of China Coal Society,2013,38(12):2202−2207.
|
[7] |
胡国泽,滕吉文,皮娇龙,等. 井下槽波地震勘探: 预防煤矿灾害的一种地球物理方法[J]. 地球物理学进展,2013,28(1):439−451.
HU Guoze,TENG Jiwen,PI Jiaolong,et al. In-seam seismic exploration techniques: a geophysical method predicting coal mine disaster[J]. Progress in Geophysics,2013,28(1):439−451.
|
[8] |
YANG Z, GE M C, WANG S G. Characteristics of transmitting channel wave in a coal seam[J]. Mining Science and Technology, 2009(19): 331−333.
|
[9] |
刘天放, 潘冬明, 李德春, 等. 槽波地震勘探[M]. 徐州: 中国矿业大学出版社, 1994.
|
[10] |
王 季,李 刚,吴国庆,等. 采煤工作面地质异常体透射槽波探测技术[J]. 煤炭科学技术,2016,44(6):159−163,193.
WANG Ji,LI Gang,WU Guoqing,et al. Transmitted channel wave detecting technology of geologic anomalous body in coal mining face[J]. Coal Science and Technology,2016,44(6):159−163,193.
|
[11] |
郭银景,巨媛媛,范晓静,等. 槽波地震勘探研究进展[J]. 煤田地质与勘探,2020,48(2):216−227.
GUO Yinjing,JU Yuanyuan,FAN Xiaojing,et al. Progress in research of in-seam seismic exploration[J]. Coal Geology & Exploration,2020,48(2):216−227.
|
[12] |
姬广忠,程建远,胡继武,等. 槽波衰减系数成像方法及其应用[J]. 煤炭学报,2014,39(S2):471−475.
JI Guangzhong,CHENG Jianyuan,HU Jiwu,et al. In-seam wave imaging using attenuation coefficient: method and application[J]. Journal of China Coal Society,2014,39(S2):471−475.
|
[13] |
王 伟, 高 星, 李松营, 等. 槽波层析成像方法在煤田勘探中的应用: 以河南义马矿区为例. 地球物理学报, 2012, 55(3): 1054−1062.
WANG Wei, GAO Xing, LI Songying, et al. Channel wave tomography method and its application in coal mine exploration: An example from Henan Yima Mining Area[J]. Chinese J Geophys (in Chinese), 2012, 55(3): 1054−1062.
|
[14] |
李松营,廉 洁,滕吉文,等. 基于槽波透射法的采煤工作面煤厚解释技术[J]. 煤炭学报,2017,42(3):719−725.
LI Songying,LIAN Jie,TENG Jiwen,et al. Interpretation technology of coal seam thickness in mining face by ISS transmission method[J]. Journal of China Coal Society,2017,42(3):719−725.
|
[15] |
崔伟雄,王保利,王云宏. 基于透射槽波的工作面煤层厚度高精度反演方法[J]. 煤炭学报,2020,45(7):2482−2490.
CUI Weixiong,WANG Baoli,WANG Yunhong. High-precision inversion method of coal seam thickness based on trans-mission channel wave[J]. Journal of China Coal Society,2020,45(7):2482−2490.
|
[16] |
王 一, 张会青, 刘培宏. 阳泉矿区 3 号煤层瓦斯地质特征和煤与瓦斯预测[C]//中国煤炭学会瓦斯地质专业委员会第三次全国瓦斯地质学术研讨会, 2003: 9−20.
|
[17] |
刘最亮,冯梅梅. 阳泉矿区新景矿构造煤发育规律的数值模拟[J]. 煤田地质与勘探,2018,46(4):35−43. doi: 10.3969/j.issn.1001-1986.2018.04.006
LIU Zuiliang,FENG Meimei. Numerical simulation study on the development patterns of tectonically deformed coal in Xinjing coal mine in Yangquan[J]. Coal Geology & Exploration,2018,46(4):35−43. doi: 10.3969/j.issn.1001-1986.2018.04.006
|
[18] |
李 成. 阳泉矿区陷落柱分布特征与褶皱、断层及地震的关系探讨[D]. 太原: 太原理工大学, 2015.
LI Cheng. Study on the distributing characteristics of karst collapse pillars in Yangquan mining area and its relationship with folds, faults and seismicity[D]. Taiyuan: Taiyuan University of Technology, 2015.
|
[19] |
令狐建设,闫志铭,徐 超. 阳泉矿区差异地质构造对煤体突出物性参数的影响[J]. 煤矿安全,2020,51(9):20−23,29.
LINGHU Jianshe,YAN Zhiming,XU Chao. Influence of different geological structures in Yangquan Mining Area on outburst-related physical parameters of coal[J]. Safety in Coal Mines,2020,51(9):20−23,29.
|
[20] |
吴志春, 郭福生, 林子瑜, 等. 三维地质建模中的多源数据融合技术与方法[J]. 吉林大学学报(地球科学版)2016, 46(6): 1895−1913.
WU Zhichun, GUO Fusheng, LIN Ziyu, et al. Technology and method of multi-data merging in 3D geological modeling[J]. Journal of Jilin University(Earth Science Edition)2016, 46(6): 1895−1913.
|
[21] |
孙振明,毛善君,祁和刚,等. 煤矿三维地质模型动态修正关键技术[J]. 煤炭学报,2014,39(5):918−924.
SUN Zhenming,MAO Shanjun,QI Hegang,et al. Dynamic correction of coal mine three-dimensional geological model[J]. Journal of China Coal Society,2014,39(5):918−924.
|
[22] |
YANG X. H,CAO Siyuan,LI Dechun,et al. Analysis of quality factors for Rayleigh channel waves[J]. Applied Geophysics,2014,11(1):107−114. doi: 10.1007/s11770-014-0409-5
|
[23] |
KATJA E,THOMAS B,WOLFGANG F,et al. Modelling of Rayleigh-type seam waves in disturbed coal seams and around a coal mine roadway[J]. Geophys. J. Int,2007,170:511−526. doi: 10.1111/j.1365-246X.2007.03436.x
|
[24] |
刘盛东,余森林,王 勃,等. 矿井巷道地震反射波超前探测波场处理方法研究[J]. 煤炭科学技术,2015,43(1):100−103.
LIU Shengdong,YU Senlin,WANG Bo,et al. Study on processing method of seismic reflection wavefield for advanced detection of mine gateway[J]. Coal Science and Technology,2015,43(1):100−103.
|
[25] |
姬广忠, 程建远, 朱培民, 等. 煤矿井下槽波三维数值模拟及频散分析[J]. 地球物理学报, 2012, 55(2): 645−654.
JI Guangzhong, CHENG Jianyuan, ZHU Peimin, et al. 3-D numerical simulation and dispersion analysis of in-seam wave in underground coal mine[J]. Chinese Journal Geophysics(in Chinese), 2012, 55(2): 645−654.
|
[26] |
ZHANG J H,WANG S Q,YAO Z X. Accelerating 3D Fourier migration with graphics processing units[J]. Geophysics,2009,74(6):129−139. doi: 10.1190/1.3223186
|
[27] |
LIN JCR, WEI K. Interactive 3D seismic-attribute volume generation with parallel graphics hardware[C]//SEG, 2007: 907−911.
|
[28] |
杨思通,程久龙. 煤巷地震超前探测数值模拟及波场特征研究[J]. 煤炭学报,2010,35(10):1633−1637.
YANG Sitong,CHENG Jiulong. Numerical simulation of fore detecting with seismic in coal roadway and study of wave field characteristics[J]. Journal of China Coal Society,2010,35(10):1633−1637.
|
[29] |
杨思通. 矿井巷道地震超前探测三维全波场数值模拟与探测方法研究[D]. 济南: 山东科技大学, 2011.
YANG Sitong. 3D full wavefield numerical simulation of seismic advanced detection in coal roadway and study of detection method[D]. Jinan: Shandong University of Science and Technology, 2011.
|
[30] |
朱光明,李桂花,程建远. 煤矿巷道内地震勘探的数值模拟[J]. 煤炭学报,2008,33(11):1263−1267. doi: 10.3321/j.issn:0253-9993.2008.11.014
ZHU Guangming,LI Guihua,CHENG Jianyuan. Numerical simulation of seismic survey in coal mine roadway[J]. Journal of China Coal Society,2008,33(11):1263−1267. doi: 10.3321/j.issn:0253-9993.2008.11.014
|
[31] |
张平松,李圣林,郭立全. 矿井随掘地震震源时间函数及其模拟数据脉冲化处理研究[J]. 煤炭科学技术,2023,51(1):361−368.
ZHANG Pingsong,LI Shenglin,GUO Liquan. Study on time function of seismic source and numerical simulation data impulse processing of seismic while driving in mining[J]. Coal Science and Technology,2023,51(1):361−368.
|
[32] |
程建远,姬广忠,朱培民. 典型含煤模型Love型槽波的频散特征分析[J]. 煤炭学报,2012,37(1):67−72.
CHENG Jianyuan,JI Guangzhong,ZHU Peimin. Love channel-waves dispersion characteristic analysis of typical coal models[J]. Journal of China Coal Society,2012,37(1):67−72.
|
[33] |
杨小慧,李德春,于鹏飞. 煤层中瑞利型槽波的频散特性[J]. 物探与化探,2010,34(6):750−752.
YANG Xiaohui,LI Dechun,YU Pengfei. Dispersion characteristics of Rayleigh-type groove waves in coal seams[J]. Geophysical and Geochemical Exploration,2010,34(6):750−752.
|
[34] |
钱建伟,李德春. Love 型槽波的基本特性研究[J]. 中国煤炭地质,2013,25(9):52−54. doi: 10.3969/j.issn.1674-1803.2013.09.11
QIAN Jianwei,LI Dechun. A study on Love mode channel wave basic characteristics[J]. Coal Geology of China,2013,25(9):52−54. doi: 10.3969/j.issn.1674-1803.2013.09.11
|
[35] |
毛明仓,张孝斌,张玉良. 基于透明地质大数据智能精准开采技术研究[J]. 煤炭科学技术,2021,49(1):286−293.
MAO Mingcang,ZHANG Xiaobin,ZHANG Yuliang. Research on intelligent and precision mining technology based on transparent geological big data[J]. Coal Science and Technology,2021,49(1):286−293.
|
[36] |
GERSZTENKORN A,SCALES J A. Smoothing seismic tomograms with alpha-trimmed means[J]. Geophysical Journal International,1988,2(1):67−72.
|
[37] |
乔勇虎,滕吉文. 煤层厚度变化时地震槽波理论频散曲线计算方法及频散特征分析[J]. 地球物理学报,2018,61(8):3374−3384.
QIAO Yonghu,TENG Jiwen. Calculation method for theoretical dispersion curves of seismic channel waves considering variation of coal seam thickness and analysis of dispersion characteristics[J]. Chinese Journal of Geophysics,2018,61(8):3374−3384.
|
[38] |
LI X,SCHOTT W,Rüter H. Frequency-dependent Q-estimation of Love-type channel waves and the application of Gkorrection to seismograms[J]. Geophysics,1995,60(6):1773−1789. doi: 10.1190/1.1443911
|
[39] |
王 季,李建政,吴 海,等. 透射槽波振幅衰减系数成像与陷落柱探测[J]. 煤炭科学技术,2015,43(1):108−111.
WANG Ji,LI Jianzheng,WU Hai,et al. Tomography of transmission in–seam wave attenuation coefficient and detection of collapse columns[J]. Coal Science and Technology,2015,43(1):108−111.
|
[40] |
乐 勇,王 伟,申青春,等. 槽波地震勘探技术在工作面小构造探测中的应用[J]. 煤田地质与勘探,2013,41(4):74−77.
LE Yong,WANG Wei,SHEN Qingchun,et al. Application of ISS in detection of small structures in working face[J]. Coal Geology & Exploration,2013,41(4):74−77.
|
[41] |
苏晓云. 我国主要矿区典型煤层槽波赋存发育特征研究[J]. 煤炭工程,2020,52(10):137−142.
SU Xiaoyun. The occurrence and development characteristics of channel wave in main mining areas of China[J]. Coal Engineering,2020,52(10):137−142.
|
1. |
吴国庆,马彦龙. 槽波探测技术在淮北煤田的应用研究. 能源与环保. 2025(03): 162-168+175 .
![]() | |
2. |
仇念广,焦文杰,金明方,赵红利,姚小帅,张万鹏,李庆斌. 基于地震槽波多频联合应用的煤层厚度预测方法. 煤炭科学技术. 2025(05): 265-276 .
![]() | |
3. |
于建军,王建成,刘百祥. 基于地质物探数据的工作面透明地质模型构建研究与应用. 山东煤炭科技. 2024(04): 157-161+167+173 .
![]() | |
4. |
邓鹏. 工作面过陷落柱覆岩垮落形态与支护技术研究. 煤. 2024(06): 38-41 .
![]() | |
5. |
吴国庆. 反射槽波探测法在煤层褶曲与断层识别中的研究与应用. 煤田地质与勘探. 2024(09): 154-165 .
![]() | |
6. |
王海军,郑三龙,王相业,董敏涛,吴艳,马良,杨伟,朱玉英. 地质构造隐蔽致灾因素透明化勘查技术——以新疆屯宝煤矿为例. 煤炭科学技术. 2024(09): 173-188 .
![]() | |
7. |
李昂,李远谋,刘朝阳,姬亚东,王峰,刘洋,马政和,方刚. 煤层底板隐伏陷落柱突水机理及工程应用. 煤炭科学技术. 2024(S2): 142-152 .
![]() | |
8. |
赵俊杰,赵明军,张铁聪,贾瑞杰,刘兴伟. 综合物探技术在工作面高精度地质建模中的研究与应用. 中国煤炭. 2023(07): 89-101 .
![]() |