Advance Search

LI Zhe,DING Xiang,LIU Shouqiang,et al. Research on vulnerability assessment of coal floor groundwater bursting based on improved local variable weight theory[J]. Coal Science and Technology,2023,51(5):209−218

. DOI: 10.13199/j.cnki.cst.2021-0959
Citation:

LI Zhe,DING Xiang,LIU Shouqiang,et al. Research on vulnerability assessment of coal floor groundwater bursting based on improved local variable weight theory[J]. Coal Science and Technology,2023,51(5):209−218

. DOI: 10.13199/j.cnki.cst.2021-0959

Research on vulnerability assessment of coal floor groundwater bursting based on improved local variable weight theory

Funds: 

National Key Research and Development Program of China (2017YFC0804104); National Natural Science Foundation of China (41877186,41602262)

More Information
  • Received Date: May 12, 2022
  • Available Online: May 17, 2023
  • In order to more scientifically solve the difficult problem of coal seam floor water inrush prediction and evaluation, first of all, a systematic and comprehensive review and comparison of the previous floor water inrush risk evaluation theories and methods, and in-depth and detailed analysis of the most advanced theory based on local variable weight According to the method of evaluating the water inrush vulnerability of the floor, it is considered that the method is not sufficient in the construction of the local state variable weight function, the variable weight interval and the determination of the weight adjustment parameters, and there is room for improvement. For this reason, a new three-interval local state variable weight function is constructed based on the existing theory and knowledge. The constant weight and the correlation coefficient of the constant weight are added to the state variable weight function, and the normalized value accumulation based on the main control factor is given. The new method for determining the threshold of the frequency variable weight interval is adopted, and the method of continuously adjusting and determining the final value of the weighting parameter based on the preliminary given empirical value is adopted according to the evaluation result. After that, a new three-interval variable weight model and its parameter determination method were used to evaluate the water inrush vulnerability of the Ordovician limestone floor in the study area, and the relatively vulnerable area was delineated. Finally, the weight adjustment law of the improved variable weight model is analyzed, and the limiting conditions of the constant weight correlation coefficient are determined through the sensitivity analysis method. It is found that a new three interval variable weight model with constant weight and constant weight correlation coefficient is added It not only reflects the core feature that the weight of the existing variable weight model changes with the change of the state value of the factor and its combination state, but also realizes the positive correlation between the degree of weight adjustment and the constant weight, which illustrates the impact of the variable weight vulnerability evaluation model this time. The improvement is scientific and feasible, and the research results are of great significance for improving the scientificity and practicability of the floor water inrush prediction and evaluation method.

  • [1]
    “能源领域咨询研究”综合组. 中国煤炭清洁高效可持续开发利用战略研究[J]. 中国工程科学,2015(9):1−5.

    The comprehensive research group for energy consulting and research. Strategic research on clean, efficient, sustainable exploitation and utilization of coal in China[J]. Strategic Study of CAE,2015(9):1−5.
    [2]
    董书宁,虎维岳. 中国煤矿水害基本特征及其主要影响因素[J]. 煤田地质与勘探,2007,34(5):34−38.

    DONG Shuning,HU Weiyue. Basic characteristics and main controlling factors of coal mine water hazard in China[J]. Coal Geology & Exploration,2007,34(5):34−38.
    [3]
    武 强,张志龙,马积福. 煤层底板突水评价的新型实用方法Ⅰ:主控指标体系的建设[J]. 煤炭学报,2007,32(1):42−47.

    WU Qiang,ZHANG Zhilong,MA Jifu. A new practicalm ethodology of the coal floor water bursting evaluating The master controlling index system construction[J]. Journal of China Coal Society,2007,32(1):42−47.
    [4]
    武 强,张志龙,张生元,等. 煤层底板突水评价的新型实用方法Ⅱ:脆弱性指数法[J]. 煤炭学报,2007,32(11):1121−1126.

    WU Qiang,ZHANG Zhilong,ZHANG Shengyuan,et al. A new practical methodology of the coalfloor water bursting evaluating Ⅱ: The vulnerable index method[J]. Journal of China Coal Society,2007,32(11):1121−1126.
    [5]
    李 博. 基于变权理论的煤层底板突水脆弱性评价[D]. 北京: 中国矿业大学(北京), 2014: 33−45.

    LI Bo. Vulnerability assessment of coal floor groundwater bursting based on variable weight theory: a case in the typial mineral region if Yuxian[D]. Beijing: China University of Mining and Technology−Beijing, 2014: 33−45.
    [6]
    武 强,李 博,刘守强,等. 基于分区变权模型的煤层底板突水脆弱性评价:以开滦蔚州典型矿区为例[J]. 煤炭学报,2013,38(9):1516−1521.

    WU Qiang,LI Bo,LIU Shouqiang,et al. Vulnerability assessment of coal floor groundwater bursting based on zoning variable weight model: A case study in the typical mining region of Kailuan[J]. Journal of China Coal Societ,2013,38(9):1516−1521.
    [7]
    国家煤矿安全监察局. 煤矿防治水细则[M]. 北京: 煤炭工业出版社, 2018: .

    National Coal Mine Safety Administration. Coal mine water prevention and control rules [M]. Beijing: China Coal Industry Publishing Press, 2018
    [8]
    武 强,解淑寒,裴振江,等. 煤层底板突水评价的新型实用方法Ⅲ:基于GIS的ANN型脆弱性指数法应用[J]. 煤炭学报,2007,32(12):1301−1306.

    WU Qiang,XIE Shuhan,PEI Zhenjiang,et al. A new practicalm ethodology of the coal floor water bursting evaluating the application of ANN vulnerable index m ethod based on GIS[J]. Journal of China Coal Society,2007,32(12):1301−1306.
    [9]
    武 强,王金华,刘东海,等. 煤层底板突水评价的新型实用方法Ⅳ: 基于GIS的AHP型脆弱性指数法应用[J]. 煤炭学报,2009,34(2):233−238.

    WU Qiang,WANG Jinhua,LIU Donghai,et al. A new practicalm ethodology of the coal floor water bursting evaluating Ⅳ: theapplicationof AHP vulnerable index method based on GIS[J]. Journal of China Coal Society,2009,34(2):233−238.
    [10]
    李 哲,牛鹏堃,宫厚健,等. 基于GIS的AHP型和ANN型脆弱性指数法在底板突水评价应用中的适用性分析[J]. 煤矿开采,2018(1):8−12.

    LI Zhe,NIU Pengkun,GONG Houjian,et al. Applicability analysis of ahp and ann vulnerability index based on gis in coal floor water inrush evaluation[J]. Coal mining Technology,2018(1):8−12.
    [11]
    刘守强,武 强,曾一凡,等. 基于GIS的改进AHP型脆弱性指数法[J]. 地球科学,2017(4):625−633.

    LIU Shouqiang,WU Qiang,ZENG Yifan,et al. The technique and the application of the improved AHP vulnerable index method based on GIS[J]. Earth Science,2017(4):625−633.
    [12]
    汪培庄. 模糊集与随机集落影[M]. 北京: 北京师范大学出版社, 1985: 85−22.

    WANG Peizhuang. Fuzzy sets and random sets[M]. Beijing: Beijing Normal University Press, 1985: 85−22.
    [13]
    李洪兴. 因素空间理论与知识表示的数学框架(Ⅷ):变权综合原理[J]. 模糊系统与数学,1995(3):1−9.

    LI Hongxing. Factor spaces and mathematical frame of knowledge representation(Ⅷ) variable weights analysis[J]. Fuzzy Systems and Mathematics,1995(3):1−9.
    [14]
    姚炳学,李洪兴. 局部变权的公理体系[J]. 系统工程理论与实践,2000(1):107−110.

    YAO Bingxue,LI Hongxing. Axiomatic system of local variable weight[J]. Systems Engineering-Theory & Practice,2000(1):107−110.
    [15]
    张英平. 变权模型在城市工程地质环境质量评价中的应用[D]. 北京: 中国地质科学院, 2012: 57-63.

    ZHANG Yingping. Application of variable weight model for quality evaluation of urban engineering geological environment: a case study of zhengzhou city[D]. Beijing: Chinese Academy of Geological Sciences, 2012: 57-63.
    [16]
    段树乔. 电力企业安全管理变权综合评价方法[J]. 数学的实践与认识,2003(8):17−23.

    DUAN Shuqiao. A method of variable weight synthetic evaluation for safety management of power business[J]. Mathematics in Practice and Theory,2003(8):17−23.
    [17]
    李 博,武 强. 煤层底板突水变权脆弱性评价模型参数灵敏度分析[J]. 采矿与安全工程学报,2015(6):911−917.

    LI Bo,WU Qiang. An analysis of parameters sensitivity for vulnerability assessment of groundwater inrush during mining from underlying aquifers based on variable weight model[J]. Journal of Mining & Safety Engineering,2015(6):911−917.
    [18]
    武 强,李 博. 煤层底板突水变权评价中变权区间及调权参数确定方法[J]. 煤炭学报,2016,41(9):2143−2149.

    WU Qiang,LI Bo. Determination of variable weight interval and adjust weight parameters in the variable weight assessment model of water-inrush from coal floor[J]. Journal of China Coal Society,2016,41(9):2143−2149.
    [19]
    李 哲,曾一凡,牛鹏堃,等. 应用于底板突水评价的层次分析法研究[J]. 煤炭技术,2018(1):170−172.

    LI Zhe,ZENG Yifan,NIU Pengkun,et al. Study on application of analytic hierarchy process in floor water bursting evaluation[J]. Coal Technology,2018(1):170−172.
    [20]
    韩林山,李向阳,严大考. 浅析灵敏度分析的几种数学方法[J]. 中国水运(下半月),2008(4):177−178.

    HAN Linshan,LI Xiangyang,YAN Dakao. Analysis of several mathematical methods of sensitivity analysis[J]. China Water Transport,2008(4):177−178.
    [21]
    刘玉珍,程世迎. 灵敏度分析法确定水文地质参数的基本模型及其应用[J]. 水利学报,2006(7):846−850.

    LIU yuzhen,CHENG Shiying. Basic model of sensitivity analysis method for determining hydro-geological parameters[J]. Journal of Hydraulic Engineering,2006(7):846−850.
    [22]
    赵春虎. 高承压含水层水文地质参数局部和全局灵敏度分析[J]. 煤炭科学技术,2013,41(8):110−113.

    ZHAO Chunhu. Analysis on local and overall sensitivity of high pressurized hydrological parameters of aquifer[J]. Coal Science and Technology,2013,41(8):110−113.
  • Cited by

    Periodical cited type(5)

    1. 吴雪菲. 基于改进脆弱性指数法的采前煤层底板突水风险评价. 煤矿安全. 2025(07)
    2. 谢俊,陈登金,崔志刚,王红伟,王鹏威,韩冰,张志伟. 基于GIS和AHP结合的寺家庄煤矿15号煤顶板突水危险性评价. 煤. 2025(02): 44-47 .
    3. 杨艳,王琳. 偏远寒区农村供水工程保障能力评价研究. 价值工程. 2024(10): 13-15 .
    4. 宗伟琴. 煤矿水害监测预警GIS平台研发及应用. 能源科技. 2024(05): 28-33 .
    5. 程斌,彭晨阳. 基于变权理论的海外EPC道路工程风险评估——以莫桑比克德尔加杜角省N14国道升级改造项目为例. 项目管理技术. 2024(11): 38-42 .

    Other cited types(2)

Catalog

    Article views (122) PDF downloads (31) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return