Advance Search

ZHOU Tao,HU Zhenqi,RUAN Mengying,et al. Classification of coal gangue pile vegetation based on UAV remote sensing[J]. Coal Science and Technology,2023,51(5):245−259

. DOI: 10.13199/j.cnki.cst.2021-0899
Citation:

ZHOU Tao,HU Zhenqi,RUAN Mengying,et al. Classification of coal gangue pile vegetation based on UAV remote sensing[J]. Coal Science and Technology,2023,51(5):245−259

. DOI: 10.13199/j.cnki.cst.2021-0899

Classification of coal gangue pile vegetation based on UAV remote sensing

Funds: 

National Key Research and Development Program of China (2019YFC1805003)

More Information
  • Received Date: August 02, 2021
  • Available Online: May 28, 2023
  • The accurate classification of vegetation species is the basis for the evaluation of vegetation restoration effect of coal gangue pile. In this paper, the visible image of coal gangue pile in different seasons was obtained by UAV remote sensing technology. The color space conversion and texture filtering were used to adequately explore the rich features of color, structure and texture in the visible image. Then, the traditional artificial feature selection method was improved, which could quickly, simply and efficiently screen features information to obtain the optimal classification features, and the optimized results were fused with RGB images to obtain multi-feature fusion images. Finally, based on two stages of RGB images and multi-feature fusion images, the vegetation of coal gangue pile was classified by three supervised classification methods, including support vector machine (SVM), maximum likelihood (ML) and neural network (NN). Meanwhile, the accuracy of classification results was evaluated by confusion matrix and the dynamic changes of vegetation were analyzed. The results showed that the improved artificial feature selection method could screen out the optimal classification features of coal gangue pile vegetation in different seasons. The selected classification features can not only effectively reflect the differences of various ground features, but also reduce the redundancy of feature information to improve the accuracy and efficiency of image classification. The classification result based on Support Vector Machine Classification (SVM) combined with multi-feature fusion image had highest classification accuracy, and the overall classification accuracy could reach 90.60%, and the corresponding Kappa coefficient is 0.8780, which was 9.74% and 0.1265 higher than that of RGB image of the same period, respectively. And, the accuracy of MLC and NNC classification methods was less improved. Compared with the RGB images of the same period, the overall classification accuracy could be improved by 6.95% and 3.93%, respectively, and the corresponding Kappa coefficient could be improved by 0.0845 and 0.0541, respectively. At the same time, based on the result of optimal classification, this paper evaluated the vegetation restoration effect of coal gangue pile in Changcun from the perspectives of vegetation coverage and vegetation allocation pattern. The results showed that a variety of different vegetation allocation patterns were adopted by the coal gangue pile, and the vegetation coverage in autumn and summer is higher than 75%. The overall effect of vegetation restoration was better. This study could provide reference for the identification and classification of coal gangue piles vegetation information based on UAV visible light image, and meanwhile provide opinions or suggestions for the later management and maintenance of coal gangue piles vegetation restoration.

  • [1]
    胡振琪,理源源,李根生,等. 碳中和目标下矿区土地复垦与生态修复的机遇与挑战[J]. 煤炭科学技术,2023,51(1):474−483.

    HU Zhenqi,LI Yuanyuan,LI Gensheng,et al. Opportunities and challenges of land reclamation and ecological restoration in mining areas under carbon neutral target[J]. Coal Science and Technology,2023,51(1):474−483.
    [2]
    王绍清,张 路,赵云刚,等. 激光诱导法制备煤基石墨烯的探索及其结构特征研究[J]. 煤炭科学技术,2023,51(2):458−465.

    WANG Shaoqing,ZHANG Lu,ZHAO Yungang,et al. Exploration and structural characteristics of laser-induced preparation of coal-based graphene[J]. Coal Science and Technology,2023,51(2):458−465.
    [3]
    李 松,万 洁. 煤矸石自燃机理及其防治技术研究[J]. 环境科学与技术,2005(2):82−84,119.

    LI Song,WAN Jie. Coal waste rocks: spontaneous combustion mechanism and its control[J]. Environmental Science & Technology,2005(2):82−84,119.
    [4]
    秦波涛,蒋文婕,史全林,等. 矿井粉煤灰基防灭火技术研究进展[J]. 煤炭科学技术,2023,51(1):329−342.

    QIN Botao,JIANG Wenjie,SHI Quanlin,et al. Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines[J]. Coal Science and Technology,2023,51(1):329−342.
    [5]
    杨宇平,许 丽,丰 菲,等. 基于植被重建的宁东矿区煤矸石山立地类型及其特征[J]. 水土保持通报,2020,40(3):202−207.

    YANG Yuping,XU Li,FENG Fei,et al. Site types and characteristics of coal gangue hill based on vegetation reconstruction in Ningdong mining area[J]. Bulletin of Soil and Water Conservation,2020,40(3):202−207.
    [6]
    赵方莹,刘 飞,巩 潇. 煤矸石山危害及其植被恢复研究综述[J]. 露天采矿技术,2013(2):77−81.

    ZHAO Fangying,LIU Fei,GONG Xiao. Summarize of coal gangues harm and plant renew research[J]. Opencast Mining Technology,2013(2):77−81.
    [7]
    李鹏波,胡振琪,吴 军,等. 煤矸石山的危害及绿化技术的研究与探讨[J]. 矿业研究与开发,2006(4):93−96.

    LI Pengbo,HU Zhenqi,WU Jun,et al. Research and discussion on the hazards and greening technology of coal gangue dump[J]. Mining Research and Development,2006(4):93−96.
    [8]
    韩文霆,张立元,张海鑫,等. 基于无人机遥感与面向对象法的田间渠系分布信息提取[J]. 农业机械学报,2017,48(3):205−214.

    HAN Wenting,ZHANG Liyuan,ZHANG Haixin,et al. Extraction method of sublateral canal distribution information based on UAV remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(3):205−214.
    [9]
    吴智超,李长春,冯海宽,等. 基于无人机数码影像的马铃薯覆盖度提取方法[J]. 农业机械学报,2020,51(3):164−170. doi: 10.6041/j.issn.1000-1298.2020.03.019

    WU Zhichao,LI Changchun,FENG Haikuan,et al. Potato coverage extraction method based on digital image[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(3):164−170. doi: 10.6041/j.issn.1000-1298.2020.03.019
    [10]
    DEHKORDI R H,JARROUDI M E,KOUADIO L,et al. Monitoring wheat leaf rust and stripe rust in winter wheat using high-resolution UAV-Based Red-Green-Blue Imagery[J]. Remote Sensing,2020,12:3696.
    [11]
    ŁUKASZ J,KONRAD S,WOJCIECH Ostrowski,et al. Evaluation of Rapeseed Winter Crop Damage Using UAV-Based Multispectral Imagery[J]. Remote Sensing,2020,12(16):2618.
    [12]
    陈 鹏,冯海宽,李长春,等. 无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量[J]. 农业工程学报,2019,35(11):63−74.

    CHEN Peng,FENG Haikuan,LI Changchun,et al. Estimation of chlorophyll content in potato using fusion of texture and spectral features derived from UAV multispectral image[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(11):63−74.
    [13]
    JIN X,LI Z,Atzberger C. Editorial for the special issue “Estimation of Crop Phenotyping Traits using Unmanned Ground Vehicle and Unmanned Aerial Vehicle Imagery”[J]. Remote Sensing,2020,12(6):940. doi: 10.3390/rs12060940
    [14]
    MIDHUN M,CARLOS A S,CARINE K,et al. Individual tree detection from unmanned aerial Vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest[J]. Forests,2017,8(9):340−357. doi: 10.3390/f8090340
    [15]
    杨 坤,赵艳玲,张建勇,等. 利用无人机高分辨率影像进行树木高度提取[J]. 北京林业大学学报,2017,39(8):17−23.

    YANG Kun,ZHAO Yanling,ZHANG Jianyong,et al. Tree height extraction using high-resolution imagery acquired from an unmanned aerial vehicle (UAV)[J]. Journal of Beijing Forestry University,2017,39(8):17−23.
    [16]
    SEIFERT E,SEIFERT S,VOGT H,et al. Influence of Drone Altitude, Image Overlap, and Optical Sensor Resolution on Multi-View Reconstruction of Forest Images[J]. Remote Sensing,2019,11(10):1252. doi: 10.3390/rs11101252
    [17]
    彭大雷,许 强,董秀军,等. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展,2017,32(3):319−330.

    PENG Dalei,XU Qiang,DONG Xiujun,et al. Application of unmanned aerial vehicles low-altitude photogrammetry in investigation and evaluation of loess landslide[J]. Advance in Earth Science,2017,32(3):319−330.
    [18]
    赵星涛,胡 奎,卢晓攀,等. 无人机低空航摄的矿山地质灾害精细探测方法[J]. 测绘科学,2014,39(6):49−52,64.

    ZHAO Xingtao,HU Kui,LU Xiaopan,et al. Precise detection method for mine geological disasters using low-altitude photogrammetry based on unmanned aerial vehicle[J]. Science of Surveying and Mapping,2014,39(6):49−52,64.
    [19]
    HU Xiao,LI Xinju,MIN Xiangyu,et al. Optimal scale extraction of farmland in coal mining areas with high groundwater levels based on visible light images from an unmanned aerial vehicle (UAV)[J]. Earth Science Informatics,2020,13(5):1151−1162.
    [20]
    肖 武,陈佳乐,赵艳玲,等. 利用无人机遥感反演高潜水位矿区沉陷地玉米叶绿素含量[J]. 煤炭学报,2019,44(1):295−306.

    XIAO Wu,CHEN Jiale,ZHAO Yanling,et al. Identify maize chlorophyll impacted by coal mining subsidence in high groundwater table area based on UAV remote sensing[J]. Journal of China Coal Society,2019,44(1):295−306.
    [21]
    X HU, X LI. Information extraction of subsided cultivated land in high-groundwater-level coal mines based on unmanned aerial vehicle visible bands[J]. Environmental Earth Sciences, 2019, 78(14).
    [22]
    汪小钦,王苗苗,王绍强,等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报,2015,31(5):152−157, 159, 158.

    WANG Xiaoqin,WANG Miaomiao,WANG Shaoqiang,et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(5):152−157, 159, 158.
    [23]
    高永刚,林悦欢,温小乐,等. 基于无人机影像的可见光波段植被信息识别[J]. 农业工程学报,2020,36(3):178−189.

    GAO Yonggang,LIN Yuehuan,WEN Xiaole,et al. Vegetation information recognition in visible band based on UAV images[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(3):178−189.
    [24]
    LU B,HE Y. Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,128:73−85. doi: 10.1016/j.isprsjprs.2017.03.011
    [25]
    郭 鹏,武法东,戴建国,等. 基于无人机可见光影像的农田作物分类方法比较[J]. 农业工程学报,2017,33(13):112−119. doi: 10.11975/j.issn.1002-6819.2017.13.015

    GUO Peng,WU Fadong,DAI Jianguo,et al. Comparison of farmland crop classification methods based on visible light images of unmanned aerial vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(13):112−119. doi: 10.11975/j.issn.1002-6819.2017.13.015
    [26]
    韩文霆,李 广,苑梦婵,等. 基于无人机遥感技术的玉米种植信息提取方法研究[J]. 农业机械学报,2017,48(1):139−147.

    HAN Wenting,LI Guang,YUAN Mengchan,et al. Extraction method of maize planting information based on UAV remote sensing techonology[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(1):139−147.
    [27]
    戴建国,张国顺,郭 鹏,等. 基于无人机遥感可见光影像的北疆主要农作物分类方法[J]. 农业工程学报,2018,34(18):122−129.

    DAI Jianguo,ZHANG Guoshun,GUO Peng,et al. Classification method of main crops in northern Xinjiang based on UAV visible waveband images[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(18):122−129.
    [28]
    冯绪兴,倪小明,郝少伟,等. 常村煤矿煤层气井产水/产气曲线类型及其成因分析[J]. 中国矿业,2021,30(1):106−113.

    FENG Xuxing,NI Xiaoming,HAO Shaowei,et al. Curve types about water and gas production and their formation mechanism of coalbed methane Changcun coal mine[J]. China Mining Magazine,2021,30(1):106−113.
    [29]
    庞晓敏,闵子建,阚江明. 基于HSI和LAB颜色空间的彩色图像分割[J]. 广西大学学报(自然科学版),2011,36(6):976−980.

    PANG Xiaomin,MIN Zijian,KAN Jiangming. Color image segmentation based on HIS and LAB color space[J]. Journal of Guangxi University (Natural Science Edition),2011,36(6):976−980.
    [30]
    韩 洁,郭 擎,李 安. 结合非监督分类和几何—纹理—光谱特征的高分影像道路提取[J]. 中国图象图形学报,2017,22(12):1788−1797.

    HAN Jie,GUO Qing,LI An. Road extraction based on unsupervised classification and geometric-texture-spectral features for high-resolution remote sensing images[J]. Journal of Image and Graphics,2017,22(12):1788−1797.
    [31]
    张学习,杨宜民. 彩色图像工程中常用颜色空间及其转换[J]. 计算机工程与设计,2008(5):1210−1212.

    ZHANG Xuexi,YANG Yimin. Common color space and its conversions in color image project[J]. Computer Engineering and Design,2008(5):1210−1212.
    [32]
    孙慧贤,张玉华,罗飞路. 基于HSI颜色空间的彩色边缘检测方法研究[J]. 光学技术,2009,35(2):221−224,228.

    SUN Huixian,ZHANG Yuhua,LUO Feilu. Color edge detection based on HIS color space[J]. Optical Technique,2009,35(2):221−224,228.
    [33]
    侯群群,王 飞,严 丽. 基于灰度共生矩阵的彩色遥感图像纹理特征提取[J]. 国土资源遥感,2013,25(4):26−32.

    HOU Qunqun,WANG Fei,YAN Li. Extraction of color image texture feature based on gray-level co-occurrence matrix[J]. Remote Sensing for Land and Resources,2013,25(4):26−32.
    [34]
    刘 斌,史 云,吴文斌,等. 基于无人机遥感可见光影像的农作物分类[J]. 中国农业资源与区划,2019,40(8):55−63.

    LIU Bin,SHI Yun,WU Wenbin,et al. Crop classification based on UAV remote sensing images[J]. Chinese Journal of Agricultural Resources and Regional Planning,2019,40(8):55−63.
    [35]
    刘 峰,刘素红,向 阳. 园地植被覆盖度的无人机遥感监测研究[J]. 农业机械学报,2014,45(11):250−257. doi: 10.6041/j.issn.1000-1298.2014.11.039

    LIU Feng,LIU Suhong,XIANG Yang. Study on monitoring fraction vegetation cover of garden plots by unmanned aerial vehicles[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(11):250−257. doi: 10.6041/j.issn.1000-1298.2014.11.039
  • Related Articles

    [1]XU Changyou, CHEN Gang, ZHANG Qiuxia, WANG Bo, ZHANG Hongwang, LI Hongrui, QIN Weiwei, LI Muyang. Machine learning-based prediction method for open-pit mining truck speed distribution in manned operation[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 435-442. DOI: 10.12438/cst.2023-1490
    [2]QIAO Shichao, WANG Yi’nan, LYU Jiayang, CHEN Heng, LIU Tao, XU Gang, ZHAI Rongrong. SC-XGBoost based soft measurement method for coal low heat value in power station[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 332-340. DOI: 10.12438/cst.2023-0241
    [3]CHEN Tao. Danger-relief principle and parameter optimization of borehole energy relief for rock burst in coal road floor[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 21-31. DOI: 10.13199/j.cnki.cst.2021-0772
    [4]ZHAO Pengxiang, KANG Xinpeng, LI Shugang, LIN Haifei, GAN Lujun, AN Xingbao. Optimization of “hole-drift” collaborative drainage layout parameters and high efficient drainage in pressure relief gas migration area[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(2): 137-146.
    [5]YANG Renshu, WANG Yue, LIN Zhibo. Optimization of blasting hole density in rock roadway driving[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 183-191. DOI: 10.13199/j.cnki.cst.2021.01.013
    [6]ZHAO Hongbao, WEI Ziqiang, LUO Ke, SU Boyi, REN Chaopeng, WU Guoming. Stability and control measures of open-pit mine dump slope under rainfall conditions[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10).
    [7]Wang Fangxiang Wang Ruihe Zhou Weidong Zhao Cun Li Luopeng, . Suitability analysis and parameter optimization on particle impact drilling technology of seam[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (9).
    [8]LIU Hui-hu SANG Shu-xun LI Meng-xi LIU Shi-qi XU Hong-jie ZHAO Zhi-gen XIE Yan, . Analysis on Affecting Factors and Technique Optimizing of Fractured Coalbed Methane Well[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (11).
  • Cited by

    Periodical cited type(14)

    1. 向鑫. 基于优化灰色关联度理论的矿井突水水源识别模型及应用. 水利规划与设计. 2025(08)
    2. 李迎雪,郑禄林,杨爱莲,曾艳,石鑫,冉浪. 基于QPSO-BP神经网络的矿井突水水源判识模型研究. 贵州大学学报(自然科学版). 2025(01): 114-124 .
    3. 苏成哲,邹阳耀,张殿明. 基于优化极限学习机模型的采空区多源指标危险性辨识研究. 矿业研究与开发. 2025(02): 155-161 .
    4. 林朋,孙成,任珂,刘育林,李阳. 基于PSO-XGBoost的煤层断层智能识别方法研究. 矿业科学学报. 2025(01): 57-69 .
    5. 陶志勇. 煤矿涌水水源快速判识方法在神东矿区的应用. 中国煤炭. 2025(02): 79-87 .
    6. 谢潇,鲁璐. 基于TPE-LightGBM的平顶山煤田矿井水源判识模型研究. 陕西煤炭. 2025(06): 13-20 .
    7. 陈志鼎,李小龙,李广聪,万山涛,董亿. 基于泥水平衡盾构掘进参数的PSO-BP神经网络掘进地层识别模型研究. 水电能源科学. 2024(02): 67-71 .
    8. 王皓,孙钧青,曾一凡,尚宏波,王甜甜,乔伟. 蒙陕接壤区煤层顶板涌水水源智能判别方法. 煤田地质与勘探. 2024(04): 76-88 .
    9. 肖观红,鲁海峰. 基于PCA-GA-RF的矿井突水水源快速识别模型. 煤矿安全. 2024(06): 184-191 .
    10. 李振阳,张宝岗,熊信,杨承业,白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究. 黄金科学技术. 2024(04): 620-630 .
    11. 蔡俊,韦一鸣. 轴流风机故障诊断中的信号特征选择方法研究. 佳木斯大学学报(自然科学版). 2024(10): 66-71 .
    12. 温泉,余玉欢,庄尚德,牟军敏. 融合SHAP和TSO-XGBoost模型的水路货运量预测. 水利水运工程学报. 2024(06): 86-96 .
    13. 王嘉宁,王莹,牛学军,张雪杉. 基于QRBL优化的TSO-XGBoost的交通事故严重程度预测及分析研究. 西藏科技. 2024(12): 67-74 .
    14. 李倩雯,申建军,张会德,上官泽誉. 薄基岩区覆岩采动破坏特征与控水控砂性能评价. 煤炭科学技术. 2023(S2): 200-209 . 本站查看

    Other cited types(4)

Catalog

    Article views (67) PDF downloads (31) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return