Advance Search

WANG Zhimin,LIANG Yunpei,ZOU Quanle,et al. Movement of overlying rock and deformation law of surface well under multiple mining with large dip angle[J]. Coal Science and Technology,2023,51(4):47−55

. DOI: 10.13199/j.cnki.cst.2021-0827
Citation:

WANG Zhimin,LIANG Yunpei,ZOU Quanle,et al. Movement of overlying rock and deformation law of surface well under multiple mining with large dip angle[J]. Coal Science and Technology,2023,51(4):47−55

. DOI: 10.13199/j.cnki.cst.2021-0827

Movement of overlying rock and deformation law of surface well under multiple mining with large dip angle

Funds: 

National Natural Science Foundation of China (52174166)

More Information
  • Received Date: September 29, 2022
  • Available Online: May 11, 2023
  • Surface wells are prone to deformation and even instability under the mining action caused by coal seam mining. This is also a key issue that restricts the application of gas drainage technology in surface wells in mining pressure relief areas. Based on the mining of high-incline coal seam group in Xinjiang 1930 Coal Mine, this paper carried out similar simulation experiments of surface well deformation under high-incline coal seam group mining, by monitoring overlying rock movement, coal seamstress changes, and the axial and circumferential directions of different positions of surface well pipelines. Deformation reveals the law of deformation of surface wells under the mining of large-dip coal seams. Research shows that: first, surface wells are in a state of sheer, compression, and tension during the mining process. Most of the time, the shear deformation in the axial direction is greater than the tensile deformation in the axial direction, that is, the shearing action on the surface well is dominant. At the same time, during the mining process, the shear deformation in the circumferential direction and the axial expansion and contraction deformation of the surface well is negative to a certain extent. The correlation, to a certain extent, shows that the shearing and tensioning, and compressing effects of surface wells are mutually restrictive; secondly, the axial deformation of surface wells shows an increasing trend as a whole, but the phenomenon of tension and shrinkage alternates in the process, and there is a big difference in the constant increase in the repeated mining of the near-level coal seam, and the changing trend of the circumferential shear deformation is similar to that of the near-level coal seam. The direction of displacement is always the inclination direction of the coal seam; the final study also found that the surface well defamation law in the upper part of the main key layer showed an overall “increase-decrease” alternating three times, and “increase-decrease” in the main key layer and lower part. Repeat four times alternately. The research results can provide certain theoretical support for the engineering application of surface wells in high-dip multiple mining areas.

  • [1]
    周德昶. 地面钻井抽采瓦斯技术的发展方向[J]. 中国煤层气,2007,4(1):18−23.

    ZHOU Dechang. Development direction of surface drilling gas extraction technology[J]. China Coalbed Methane,2007,4(1):18−23.
    [2]
    林海飞,李树刚,赵鹏翔,等. 我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术,2018,46(1):28−35.

    LIN Haifei,LI Shugang,ZHAO Pengxiang,et al. Research progress of pressure relief gas drainage technology in mining fracture zone of coal mine overburden in China[J]. Coal Science and Technology,2018,46(1):28−35.
    [3]
    周世宁,林伯泉,李增华. 瓦斯煤层开采的新思路及待研究的主要问题[J]. 中国矿业大学学报,2001,30(2):111−113.

    ZHOU Shining,LIN Boquan,LI Zenghua. New ideas and main problems to be studied in gas seam mining[J]. Journal of China University of Mining & Technology,2001,30(2):111−113.
    [4]
    ZHOU Fubao,XIA Tongqiang,WANG Xinxin,et al. Recent developments in coal mine methane extraction and utilization in China: A review[J]. J Nat Gas Sci Eng,2016,31:437−458. doi: 10.1016/j.jngse.2016.03.027
    [5]
    孙海涛,郑颖人,郭盛强,等. 地面井层面拉剪破坏模型及极限分析判识方法[J]. 中国矿业大学学报,2013,42(1):31−38.

    SUN Haitao,ZHENG Yingren,GUO Shengqiang,et al. Tension shear failure model and limit analysis identification method of surface well layer[J]. Journal of China University of Mining & Technology,2013,42(1):31−38.
    [6]
    鲁 义,刘 春,黄鑫业,等. 基于Flac数值模拟的地面垂直钻井剪切破坏研究[J]. 煤炭技术,2012,31(1):83−85.

    LU Yi,LIU Chun,HUANG Xinye,et al. Study on shear failure of surface vertical drilling based on FLAC numerical simulation[J]. Coal Technology,2012,31(1):83−85.
    [7]
    WHITTLES DN,LOWNDES IS,KINGMAN SW,et al. The stability of methane capture boreholes around a long wall coal panel[J]. International Journal of Coal Geology,2006,43(3):369−387.
    [8]
    Périé P J. Laboratory investigation of rock fracture around boreholes [D]. Berkeley: University of California, 1990.
    [9]
    钱鸣高,缪协兴. 采场上覆岩层结构的形态与受力分析[J]. 岩石力学与工程学报,1995,14(2):97−097.

    QIAN Minggao,MIAO Xiexing. Shape and stress analysis of overburden structure in stope[J]. Chinese Journal of Rock Mechanics and Engineering,1995,14(2):97−097.
    [10]
    LIU Yuzhou,LI Xiaohong. Safety analysis of stability of surface gas drainage boreholes above goaf areas[J]. International Journal of Coal Science & Technology,2007,2:149−153.
    [11]
    孙海涛,付军辉. 重复采动下煤矿采动活跃区地面井变形特征研究[J]. 煤炭科学技术,2018,46(6):40−45.

    SUN Haitao,FU Junhui. Study on deformation characteristics of surface wells in mining active areas of coal mines under repeated mining[J]. Coal Science and Technology,2018,46(6):40−45.
    [12]
    PENG SP,FU JT,ZHANG JC. Borehole casing failure analysis in unconsolidated formations: a case study[J]. Journal of Petroleum Science & Engineering,2007,59(3):226−238.
    [13]
    袁 亮,郭 华,李 平,等. 大直径地面钻井采空区瓦斯抽采理论与技术[J]. 煤炭学报,2013,38(1):1−8.

    YUAN Liang,GUO Hua,LI Ping,et al. Gas drainage theory and technology in goaf of large diameter surface drilling[J]. Journal of China Coal Society,2013,38(1):1−8.
    [14]
    梁运培,孙东玲. 岩层移动的组合岩梁理论及其应用研究[J]. 岩石力学与工程学报,2002,21(5):654−657. doi: 10.3321/j.issn:1000-6915.2002.05.010

    LIANG Yunpei,SUN Dongling. Study on composite rock beam theory and its application of rock stratum movement[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(5):654−657. doi: 10.3321/j.issn:1000-6915.2002.05.010
    [15]
    梁运培,胡千庭,郭 华,等. 地面采空区瓦斯抽放钻孔稳定性分析[J]. 煤矿安全,2007,38(3):1−4.

    LIANG Yunpei,HU Qianting,GUO Hua,et al. Stability analysis of gas drainage boreholes in ground goaf[J]. Safety in Coal Mines,2007,38(3):1−4.
    [16]
    李日富,梁运培,张 军. 地面钻孔抽采采空区瓦斯效率影响因素[J]. 煤炭学报,2009,34(7):942−946. doi: 10.3321/j.issn:0253-9993.2009.07.016

    LI Rifu,LIANG Yunpei,ZHANG Jun. Influencing factors of gas extraction efficiency in goaf by ground drilling[J]. Journal of China Coal Society,2009,34(7):942−946. doi: 10.3321/j.issn:0253-9993.2009.07.016
    [17]
    CHEN J,WANG T,ZHOU Y,et al. Failure modes of the surface venthole casing during longwall coal extraction: A case study[J]. International Journal of Coal Geology,2012,90-91:135−148. doi: 10.1016/j.coal.2011.11.007
    [18]
    解盘石,田双奇,段建杰. 大倾角伪俯斜采场顶板运移规律试验研究[J]. 煤炭学报,2019,44(10):2974−2982.

    XIE Panshi,TIAN Shuangqi,DUAN Jianjie. Experimental study on roof movement law of large dip pseudo downdip stope[J]. Journal of China Coal Society,2019,44(10):2974−2982.
    [19]
    杨 科,池小楼,刘钦节,等. 大倾角煤层综采工作面再生顶板与支架失稳机理[J]. 煤炭学报,2020,45(9):3045−3053.

    YANG Ke,CHI Xiaolou,LIU Qinjie,et al. Instability mechanism of regenerated roof and support in fully mechanized mining face with large dip seam[J]. Journal of China Coal Society,2020,45(9):3045−3053.
    [20]
    姚 琦,冯 涛,廖 泽. 急倾斜走向分段充填倾向覆岩破坏特性及移动规律[J]. 煤炭学报,2017,42(12):3096−3105.

    YAO Qi,FENG Tao,LIAO Ze. Failure characteristics and movement law of overburden with steeply inclined sublevel filling tendency[J]. Journal of China Coal Society,2017,42(12):3096−3105.
    [21]
    张俊英. 大倾角多煤层条带开采三维有限元模拟研究[J]. 煤炭学报,1999,24(3):20−24. doi: 10.3321/j.issn:0253-9993.1999.03.004

    ZHANG Junying. Study on three-dimensional finite element simulation of large dip multi seam strip mining[J]. Journal of China Coal Society,1999,24(3):20−24. doi: 10.3321/j.issn:0253-9993.1999.03.004
    [22]
    马月连,赵文静,王文博,等. 煤层开采采厚效应的相似模拟研究[J]. 煤炭技术,2019,38(3):34−37.

    MA Yuelian,ZHAO Wenjing,WANG Wenbo,et al. Similar simulation study on thickness effect of coal seam mining[J]. Coal Technology,2019,38(3):34−37.
    [23]
    刘 云,王艾伦. 复杂系统相似性原理与相似条件研究[J]. 系统工程学报,2009,24(3):350−354.

    LIU Yun,WANG Ailun. Study on similarity principle and similarity conditions of complex systems[J]. Journal of Systems Engineering,2009,24(3):350−354.
    [24]
    袁 亮. 低透高瓦斯煤层群安全开采关键技术研究[J]. 岩石力学与工程学报,2008,27(7):1370−1379.

    YUAN Liang. Research on key technologies for safe mining of low permeability and high gas coal seams[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(7):1370−1379.
  • Related Articles

    [1]SHI Guomou, ZHANG Lijia, HU Zhenqi, FU Yaokun. Research on surface movement and deformation characteristics of loess gully landform in Northern Shaanxi[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(4): 157-165. DOI: 10.13199/j.cnki.cst.2021-0626
    [2]LI Yanhe. Surface well partition gas extraction technology system and engineering practice[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(3): 100-108. DOI: 10.13199/j.cnki.cst.2022-1829
    [3]GUO Keyi WANG Jian'e, . Failure mechanism and anti-deformation design of vertical shaft affeced by coal mining[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(10).
    [4]YAN Yueguan SHI Xiaobo LIU Jibo TIAN Xiuguo ZHANG Guoguang, . In-site monitoring study on relationship between movement and deformation of surface and buildings in mining area[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(10).
    [5]SUN Haitao, FU Junhui. Study on deformation characteristics of surface borehole in active coal mining area under repeated mining[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (6).
    [6]Zhang Xiao Wang Donglin Zhang Mingpeng Xiao Zhimin Dong Haifeng, . Study on influence of gangue filling and interval roadway excavation to surface movement and deformation[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (12).
    [7]Hu Qianting Sun Haitao Du Zijjan, . Practices and application prospects on development engineering of coal seam methane surface well[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (9).
    [8]SUN Dong-ling SUN Hai-tao, . Application Prospect Analysis on Gas Drainage Technology of Surface Well in Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (6).
    [9]TENG Yong-hai TANG Zhi-xin GUO Ke-yi, . Study on Anti- Deformation Technology of New Mine Shaft[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).
    [10]Study on Surface Ground Movement Deformation Law Above High Cutting Long Coal Mining Face[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (11).
  • Cited by

    Periodical cited type(19)

    1. 郭俊青,何小海,滕奇志,吕朝阳. 基于YOLOv8-seg的岩心CT图像颗粒目标提取算法. 四川大学学报(自然科学版). 2025(01): 116-125 .
    2. 王登科,王龙航,秦亚光,位乐,曹塘根,李文睿,李璐,陈旭,夏玉玲. 基于VRA-UNet网络的煤岩组合体裂隙识别与三维重构. 煤炭科学技术. 2025(02): 96-108 . 本站查看
    3. 高晨珂. 可折展圆筒类结构件焊缝测量研究. 焊接技术. 2024(01): 41-46 .
    4. 贾雅欣,李传峰,罗华平,吴明清. 基于边缘轮廓定积分测量红枣体积的研究. 塔里木大学学报. 2024(01): 75-83 .
    5. 王刚,陈雪畅,程卫民,陈昊. 煤孔裂隙多尺度表征及其对渗透率的影响分析——以中国14个大型煤炭基地为例. 重庆大学学报. 2024(04): 34-50 .
    6. 张坤,邵鑫辉,卫杨杨,兰官奇,芦白茹,杨文豪. 掺油泥改性生土材料动态荷载下的损伤及裂缝分形特征. 西安石油大学学报(自然科学版). 2024(04): 132-142 .
    7. 王登科,房禹,魏建平,张宏图,赵立桢,王龙航,夏缘帝,李璐,王少璞,张强,任海慧. 基于深度学习的煤岩Micro-CT裂隙智能提取与应用. 煤炭学报. 2024(08): 3439-3452 .
    8. 张村,贾胜,王永乐,赵毅鑫,陈彦宏,王方田. 煤样CT扫描重构研究进展:原理、方法及应用. 煤炭学报. 2024(S2): 800-820 .
    9. 刘舜,卢洪义,章斌,杨禹成,桑豆豆. 含缺陷固体火箭发动机燃面自适应提取算法. 电子测量技术. 2023(05): 135-141 .
    10. 郝晨光,郭晓阳,邓存宝,张兴华,赵博,王荀. 基于Bi-PTI模型的CT数字煤岩孔裂隙精准识别及阈值反演. 煤炭学报. 2023(04): 1516-1526 .
    11. 司垒,李嘉豪,邢峰,魏东,戴剑博,王忠宾. 不同煤矸混合物的微波传播特性试验研究. 煤炭科学技术. 2023(05): 219-231 . 本站查看
    12. 刘红,杨奇,陈莉. 基于机器视觉的集成电路板焊点缺陷识别方法. 焊接技术. 2023(06): 93-97 .
    13. 刘锋. 原煤孔隙拓扑特征对CO_2-ECBM过程的影响机制. 煤炭工程. 2023(07): 139-144 .
    14. 孙艺方. 基于机器视觉的药物生产控制方法研究与应用. 自动化与仪器仪表. 2023(08): 130-134 .
    15. ZHANG Naiyu,GUAN Yao,GUO Yuhang,WANG Qinghui,ZHANG Lihua,PAN Baozhi. Determination of multi-component content and construction of digital cores based on CT grey thresholds of altered igneous rocks. Global Geology. 2023(03): 157-166 .
    16. 刘锋. 原生煤体多级孔隙团簇发育特征及其CT图像识别. 煤矿安全. 2023(09): 37-45 .
    17. 姜珂,石建强,陈光武. 基于改进的YOLOv5s列车轨道线检测方法. 计算机科学. 2023(S2): 307-312 .
    18. 汪雪君. 便携式载体催化甲烷检测报警仪自动测量系统. 自动化与仪器仪表. 2022(09): 257-260 .
    19. 武栋,李仁璞,郭春花. 基于最大连通区域搜索的虹膜快速定位算法. 软件. 2022(11): 4-8 .

    Other cited types(21)

Catalog

    Article views (117) PDF downloads (55) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return