GONG Yun,XIE Xinyu. Research on coal mine underground image recognition technology based on homomorphic filtering method[J]. Coal Science and Technology,2023,51(3):241−250
. DOI: 10.13199/j.cnki.cst.2021-0774Citation: |
GONG Yun,XIE Xinyu. Research on coal mine underground image recognition technology based on homomorphic filtering method[J]. Coal Science and Technology,2023,51(3):241−250 . DOI: 10.13199/j.cnki.cst.2021-0774 |
Visual SLAM technology is widely used in underground search and rescue work, and the quality of image collected by robot directly determines the quality of image composition. At present, due to the influence of dust and light source con-ditions in underground coal mine, the enhancement effect of underground image needs to be improved. At present, the coal mine monitoring image enhancement effect needs to be improved due to the influence of dust and light source conditions in the coal mine.In order to solve this problem, this paper puts forward a HSV space combined with Adaptive Gamma Correcti-on with Weighting Distribution (AGCWD) homomorphic filtering method.Firstly, to solve the problem of over-enhancement of the highlight and shadow areas existing in the classical homomorphic filtering algorithm, the AGCWD algorithm is used to carry out adaptive gamma correction for the probability density of theVcomponent in HSV space, and the new probability distribution is non-linearly mapped to improve the applicability of the homomorphic filtering to the high light and shadow ar-eas.Then single-parameter homomorphic filter is used for processing to alleviate the problem of difficult parameter selection c-aused by multiple parameters.In order to preserve the detail of the image, and then the results of single parameter after the homomorphic filtering to carry on the Contrast Limited Histograme Equalization(CLAHE);Finally, HSV inverse transformation is carried out to obtain the image in RGB space, and image enhancement is completed.By the improved homomorphic filterin-g algorithm, CLAHE algorithm and classical homomorphic filtering algorithm proposed in this experiment, the result image mean, standard deviation, peak signal-to-noise ratio (PSNR), information entropy and other indicators are evaluated.Compared with the CLAHE algorithm, the improved homomorphic filtering algorithm is improved by 65.29%, 21.58%, 17.03% and 5.18% respectively, and compared with the classical homomorphic filtering algorithm, it is improved by 52.07%, 40.73%, 36.23% and 8.96% respectively.The experimental data show that the improved homomorphic filtering algorithm can enhance the b-rightness and contrast of the image and keep the detail information of the image. At the same time, the overenhancement p-henomenon of classical homomorphic filtering on the image with large gap between light and dark is suppressed to a certainn extent.
[1] |
王国法,庞义辉,任怀伟. 煤炭安全高效综采理论、技术与装备的创新和实践[J]. 煤炭学报,2018,43(4):903−913. doi: 10.13225/j.cnki.jccs.2017.1705
WANG Guofa,PANG Yihui,REN Huaiwei. Innovation and practice of safe and efficient fully mechanized coal mining theory, technology and equipment[J]. Journal of China Coal Society,2018,43(4):903−913. doi: 10.13225/j.cnki.jccs.2017.1705
|
[2] |
苗 升,刘小雄,黄剑雄,等. 无人机视觉SLAM环境感知发展研究[J]. 计算机测量与控制,2021,29(8):1−6,41. doi: 10.16526/j.cnki.11-4762/tp.2021.08.001
MIAO Sheng,LIU Xiaoxiong,HUANG Jianxiong,et al. Research on the development of U-AV visual slam environment perception[J]. Computer Me-asurement & Control,2021,29(8):1−6,41. doi: 10.16526/j.cnki.11-4762/tp.2021.08.001
|
[3] |
杨梦佳. 基于惯导与双目视觉融合的SLAM技术研究[D]. 西安: 西安科技大学, 2020.
YANG Mengjia, SLAM Technology Based on Inertial Navi-gation and Binocular Vision Fusion[D]. Xi’an: Xi’an University of Science and Technology, 2020.
|
[4] |
SOARES João Carlos Virgolino and Gattass Marcelo and Meggiolaro Marco Antonio. Crowd-SLAM: Visual SLAM Towards Crowded Environments using Object Detection[J]. Journal of Intelligent & Robotic Systems, 2021, 102(2).
|
[5] |
王 浩,张 叶,沈宏海,等. 图像增强算法综述[J]. 中国光学,2017,10(4):438−448. doi: 10.3788/co.20171004.0438
WANG Hao,ZHANG Ye,SHEN Honghai,et al. Overview of image enhancement algorithms[J]. Chinese Optics,2017,10(4):438−448. doi: 10.3788/co.20171004.0438
|
[6] |
毕秀丽, 邱雨檬, 肖 斌, 等. 基于统计特征的图像直方图均衡化检测方法[J]计算机学报, 2021, 44(2): 292−303
BI Xiuli, QIU Yumeng, XIAO Bin, et al. Image histogram equalization detection method based on statistical features[J]. Chinese Journal of Computers, 2021, 44(2): 292−303.
|
[7] |
WANG Fengjuan, ZHANG Baoju, ZHANG Cuiping, et al. Low-light image joint enhanceme-nt optimization algorithm based on frame accumulation and multi-scale Retinex[J]. Ad Hoc Networks, 2020, 113(4): 102398.
|
[8] |
DONG Shuai, MA Jia, SU Zhilong, et al. Robust circular marker localization under non-uniform illuminations based on homomorphic filt-ering[J]. Measurement, 2021, 170(5): 108700
|
[9] |
汪秦峰. 基于直方图均衡化和Retinex的图像去雾算法研究[D]. 西安: 西北大学, 2016.
WANG Qinfeng, Research on image dehazing algorithm b-ased on histogram equalization and Retinex[D]. Xi’an: Northwest U-niversity, 2016
|
[10] |
刘 健,郭 潇,徐鑫龙,等. 基于Retinex理论的低照度图像增强技术[J]. 火力与指挥控制,2019,44(9):139−143. doi: 10.3969/j.issn.1002-0640.2019.09.027
LIU Jian,GUO Xiao,XU Xinlong,et al. Low illumination image enhancement technology based on Retinex theory[J]. Fire Control & Command Control,2019,44(9):139−143. doi: 10.3969/j.issn.1002-0640.2019.09.027
|
[11] |
程 健,鹏 鹏,郁华森,等. 基于有向线段误匹配剔除的煤矿巷道复杂场景图像拼接方法[J]. 煤炭科学技术,2022,50(9):179−191.
CHENC Jian,YAN Pengpeng,YU Huasen,et al. Image stitching method for the complicated scene of coalmine tun.nel based on mismatched elimination with directed line segments[J]. Coal Science and Technology,2022,50(9):179−191.
|
[12] |
ZENG Fei WU Qing,DU Jun. Foggy image e-nhancement based on filter variable multi-scale retinex[J]. Applied Mechanics and Materials,2014,2973:1041−1045.
|
[13] |
董静薇,赵春丽,海 博. 融合同态滤波和小波变换的图像去雾算法研究[J]. 哈尔滨理工大学学报,2019,24(1):66−70. doi: 10.15938/j.jhust.2019.01.011
DONG Jinwei,ZHAO Chunli,HAI Bo. Image demogging algorithm for fusion homomorphism filtering and wavelet transform[J]. Journal of Harbin University of Science and Technology,2019,24(1):66−70. doi: 10.15938/j.jhust.2019.01.011
|
[14] |
蔡秀梅, 马今璐, 吴成茂, 等. 基于模糊同态滤波的彩色图像增强算法[J]. 计算机仿真, 2020, 37(6): 342−346.
CAI Xiumei, MA Jinlu, WU Chengmao, et al. Color i-mage enhancement algorithm based on Fuzzy homomorphic filtering[J] Computer Simulation, 2020, 37(6): 342−346.
|
[15] |
KANWARPREET Kaur,NEERU Jindal,KULBIR Singh. Improved homomorphic filtering using fractional derivative-es for enhancement of low contrast and non-uniformly illu-minated images[J]. Multimedia Tools and Applications,2019,78(19):27891−27914. doi: 10.1007/s11042-019-7621-5
|
[16] |
梁 琳, 何卫平, 雷 蕾, 等. 光照不均图像增强方法综述[J]. 计算机应用研究, 2010, 27(5): 1625−1628.
LIANG Lin, HE Weipin, LEI Lei, et al. Overview of image enhancement methods under uneven illumination[J] Application Research of Computers, 2010, 27(5): 1625−1628.
|
[17] |
王智奇,李荣冰,刘建业,等. 基于同态滤波和直方图均衡化的图像增强算法[J]. 电子测量技术,2020,43(24):75−80. doi: 10.19651/j.cnki.emt.2005346
WANG Zhiqi,LI Rongbing,LIU Jianye,et al. Image enhancement algorithm based on homomorphic filtering a-nd histogram equalization[J]. Electronic Measurement Techn-ology,2020,43(24):75−80. doi: 10.19651/j.cnki.emt.2005346
|
[18] |
HANA F M,MAULIDA I D. Analysis of contrast lim-ited adaptive histogram equalization (CLAHE) parameters o-n finger knuckle print identification[J]. Journal of Physics:Conference Series,2021,1764(1):012−024.
|
[19] |
鲁转丽. 高分辨率光学遥感影像对比度增强方法研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2018.
NU Zhuanli. Contrast enhancement of high resolution optic-al remote sensing image[D] Xi’an: Xi'an Institute of Optics and Precision, 2018.
|
[20] |
HUANG Shihchia,CHENG Fanchieh,CHIU Yisheng. Efficient contrast enhancement using adaptive gam-ma correction with weighting distribution.[J]. IEEE transact-ions on image processing:a publication of the IEEE Sign-al Processing Society,2013,22(3):1032−1041. doi: 10.1109/TIP.2012.2226047
|
[21] |
李连志, 邢 川. 基于同态滤波的平面视觉图像色彩增强算法[J]. 计算机仿真, 2021, 38(2): 249−252, 426
LI Lianzhi, XING Chuan. Color enhancement algorithm of p-lane vision image based on homomorphic filtering[J] Com-puter Simulation, 2021, 38(2): 249−252, 426
|
[22] |
HUANG Lidong,ZHAO Wei,WANG Jun,et al. Combination of contrast limited adaptive histogram equalisation and discrete wavelet transfo-rm for image enhancement[J]. IET Image Processing,2015,9(10):908−915. doi: 10.1049/iet-ipr.2015.0150
|
[23] |
韩少刚. 基于多直方图均衡的图像增强算法研究[D]. 安庆: 安庆师范大学, 2020.
HAN Shaogang. Image enhancement algorithm based on m-ulti histogram equalization[D] Anqing : Anqing Normal University, 2020.
|
[24] |
杨 恩. 煤岩反射光谱特征及识别方法研究[D]. 徐州: 中国矿业大学, 2019.
YANG En. Study on reflectance spectrum characteristics and recognition method of coal and rock[D]. Xuzhou: China Universit-y of mining and Technology, 2019.
|