Advance Search

FAN Youlin,CHANG Ting,ZHANG Jinlong,et al. Research on influence of CPAM ionic degree on settling characteristics of high muddied coal slime water[J]. Coal Science and Technology,2023,51(3):251−260

. DOI: 10.13199/j.cnki.cst.2021-0731
Citation:

FAN Youlin,CHANG Ting,ZHANG Jinlong,et al. Research on influence of CPAM ionic degree on settling characteristics of high muddied coal slime water[J]. Coal Science and Technology,2023,51(3):251−260

. DOI: 10.13199/j.cnki.cst.2021-0731

Research on influence of CPAM ionic degree on settling characteristics of high muddied coal slime water

Funds: 

China Postdoctoral Science Foundation Project (2020M673551XB); China University of Mining and Technology (Beijing) Yuecaki Young Scholars Program (2020QN08); Central University Basic Research Fund Outstanding Youth Special Project (2020YQHH02)

More Information
  • Received Date: July 02, 2021
  • Available Online: April 26, 2023
  • In order to study the sedimentation characteristics and action mechanism of cationic polyacrylamide (CPAM) with different ionic degrees on the high muddied coal slime water, the particle size composition and mineral composition of the high muddied coal slime water from Lijiahao Coal preparation Plant were studied. The influence of ionic degree of CPAM on sedimentation velocity, turbidity of clarification zone, thickness of compression zone and sedimentation kinetics of high muddied coal slime water was studied by using the experimental method of flocculation sedimentation of coal slime water. Zeta potential on the surface of slime particles was measured, and the effect of CPAM with different ionic degree on the zeta potential of slime particles was analyzed. The stability of coal slime water under different ionic conditions was studied by using Turbiscan Lab stability analyzer. Based on the sedimentation characteristics and dynamic stability of coal slime water, the sedimentation mechanism of CPAM ion degree on coal slime water was analyzed. The results show that large amount of kaolinite particles and high content of fine particles are the main reasons for the difficult settlement of coal slime water. Under the same dosage, CPAM has a poor sedimentation effect on coal slime water when the ionic degree is low. When the ionic degree is high, the sedimentation velocity of coal slime water is lower, the thickness of compression zone is higher, and the turbidity is lower. The sedimentation effect of coal slime water is good when the ionic degree is high, and CPAM with ionic degree 30%-60% has the best sedimentation effect when the dosage is 36 g/m3, with fast sedimentation speed, low turbidity and thin compression zone thickness. CPAM has great influence on the sedimentation effect and stability of coal slime water. CPAM can reduce the Zeta potential value on particle surface, promote the formation of flocs in the sedimentation process of slime water, accelerate the sedimentation speed, reduce the stability of slime water and turbidity after the sedimentation of coal slime water, due to its long chain containing positive active groups that can easily adsorb with the surface of negatively charged slime particles. The principle of action with coal slime water is “electric neutralization”, “adsorption bridge” and “net capture and sweep”. It is a kind of excellent coal slime water treatment agent.

  • [1]
    董宪姝. 煤泥水处理技术研究现状及发展趋势[J]. 选煤技术, 2018, (3): 1−8.

    DONG Xianshu. State-of-the-art and developing trend of coal slurry treatment technology[J]. Coal Preparation Technology, 2018, (3): 1−8.
    [2]
    闵凡飞, 张明旭, 朱金波. 高泥化煤泥水沉降特性及凝聚剂作用机理研究[J]. 矿冶工程, 2011, 31(4): 55−58,62.

    MIN Fanfei, ZHANG Mingxu, ZHU Jinbo. Settling property of highly-argillized coal slurry and reaction mechanism of coagulants[J]. Mining and Metallurgical Engineering, 2011, 31(4): 55−58,62.
    [3]
    段杨敏. 含蒙脱石煤泥水的沉降特性研究 [D]. 徐州: 中国矿业大学, 2016.

    DUAN Yangmin. Study on the settlement characteristics of coal slurry containing montmorillonite[D]. Xuzhou: China University of Mining and Technology, 2016.
    [4]
    宋 帅,樊玉萍,马晓敏,等. 机械剪切对煤泥絮团结构特性及影响机理的研究[J]. 煤炭科学技术,2020,48(6):214−219.

    SONG Shuai,FAN Yuping,MA Xiaomin,et al. Study on structural characteristics and influence mechanism of coal slurry flocs by mechanical shearing[J]. Coal Science and Technology,2020,48(6):214−219.
    [5]
    陈茹霞, 董宪姝, 樊玉萍, 等. 高岭石对煤泥脱水效果的影响及机理研究[J]. 矿业研究与开发, 2021, 41(3): 108−112.

    CHEN Ruxia, DONG Xianshu, FAN Yuping, et al. Study on the effect and mechanism of kaolinite on coal slurry dewatering[J]. Mining Research and Development, 2021, 41(3): 108−112.
    [6]
    王会平, 张鸿波, 王云婷, 等. 含煤系高岭土煤泥的沉降实验研究[J]. 中国矿业, 2016, 25(6): 114−117.

    WANG Huiping, ZHANG Hongbo, WANG Yunting, et al. Experimental study on sedimentation of coal slime-bearing kaolin[J], China Mining Magazine, 2016, 25(6): 114−117.
    [7]
    FENG Xin,DENG Jinchuan,WAN Junjie,et al. Preparation of a hydrophobically associated cationic polyacrylamide and its regulation of the sludge dewatering performance[J]. Water Science & Technology,2020,82(7):1350−1369.
    [8]
    孙 庆. 多级加药用于煤泥水沉降澄清技术的研究 [D]. 淮南: 安徽理工大学, 2014.

    SUN Qing. Research on multi-stage dosing for settlement of coal slime water clarification technology[D]. Huainan: Anhui University of Science & Technology, 2014.
    [9]
    赵建峰. 表面活性剂及金属离子对微细石英颗粒聚团沉降特性的影响研究 [D]. 淮南: 安徽理工大学, 2018.

    ZHAO Jianfeng. Effects of surfactants and metal ions on agglomeration settlement characteristics of Fine quartz particles[D]. Huainan: Anhui University of Science & Technology, 2018.
    [10]
    李桂春, 闫晓慧, 李明明. PAC作用下煤泥水絮凝沉降的EDLVO分析[J]. 黑龙江科技大学学报, 2020, 30(1): 45−49.

    LI Guichun, YAN Xiaohui, LI Mingming. EDLVO analysis of flocculation and sedimentation of coal slime water under PAC[J]. Journal of Heilongjiang University of Science and Technology, 2020, 30(1): 45−49.
    [11]
    孙迎林. 不同阳离子在淮南矿区煤泥颗粒表面吸附特性的研究 [D]. 淮南: 安徽理工大学, 2015.

    SUN Yinglin. Study on the adsorption characteristics of the different metal cations on the surface of the coal particles of Huainan diggings[D]. Huainan: Anhui University of Science & Technology, 2015.
    [12]
    徐初阳, 罗 慧, 聂容春, 等. 聚丙烯酰胺的性质对煤泥水絮凝效果的影响[J]. 煤炭技术, 2004, 7(1): 63−66.

    XU Chuyang, LUO Hui, NIE Rongchun, et al. The effect of the property of polyacrylamide on flocculation efficiency of coal slurry[J]. Coal Technology, 2004, 7(1): 63−66.
    [13]
    YAN W L,WANGY L,CHEN Y J. Effect of conditioning by PAM polymers with different charges on the structural and characteristic evolutions of water treatment residuals[J]. Water Research,2013,47(17):6445−6456. doi: 10.1016/j.watres.2013.08.016
    [14]
    童甲甲. 不同离子型PAM的合成与应用研究 [D]. 淮南: 安徽理工大学, 2017.

    TONG Jiajia. Study on synthesis and application of different types of polyacrylamide[D]. Huainan: Anhui University Of Science & Technology, 2017.
    [15]
    朱建东, 朱书全, 崔广文. 煤泥水混凝机理研究及其应用[J]. 选煤技术, 2004, (4): 69−72,92.

    ZHU Jiandong, ZHU Shuquan, CUI Guangwen. Study on coagulation mechanism of coal slime water and its application[J]. Coal Preparation Technology, 2004, (4): 69−72,92.
    [16]
    史志鹏. 非离子聚丙烯酰胺(NPAM)对絮凝体沉降特性的影响研究 [D]. 咸阳: 西北农林科技大学, 2019.

    SHI Zhipeng. Flocculation and sedimentation characteristics of flocs under the influence of nonionic polyacrylamide[D]. Xianyang: Northwest A & F University, 2019.
    [17]
    HE Jia,CHU Jian,TAN Soon Keat,et al. Sedimentation behavior of flocculant-treated soil slurry[J]. Marine Georesources & Geotechnology,2016,35(5):593−602.
    [18]
    郑继洪, 徐初阳, 聂容春, 等. 阳离子型聚丙烯酰胺的絮凝性能研究[J]. 中国煤炭, 2013, 39(4): 78−81.

    ZHENG Jihong, XU Chuyang, NIE Rongchun, et al. Study on flocculating performance of cationic polyacrylamide[J]. China Coal, 2013, 39(4): 78−81.
    [19]
    吕一波, 张乃旭, 蒋振东, 等. 阳离子型絮凝剂C-SS-g-AM合成及煤泥水沉降实验研究[J]. 黑龙江科技大学学报, 2015, 25(5): 469−475.

    LYU Yibo, ZHANG Naixu, JIANG Zhendong, et al. Synthesis of cationic flocculant C-SS-g-AM and test of coal slurry sedimentation[J]. Journal of Heilongjiang University of Science and Technology, 2015, 25(5): 469−475.
    [20]
    罗 慧. 阳离子型聚丙烯酰胺的絮凝性能研究[J]. 应用化工, 2006, (11): 864−866.

    LUO Hui, Research on flocculating property of cationic polyacrylamide[J]. Applied Chemical Industry, 2006, (11): 864−866.
    [21]
    陈 军,闵凡飞,刘令云等. 高泥化煤泥水的疏水聚团沉降试验研究[J]. 煤炭学报,2014,39(12):2507−2512.

    CHEN Jun,MIN Fanfei,LIU Lingyun,et al. Study on hydrophobic aggregation settlement of high muddied coal slurry water[J]. Journal of China Coal Society,2014,39(12):2507−2512.
    [22]
    刘 利. 高浓度煤泥水絮体分形特性及混凝机理的研究 [D]. 徐州: 中国矿业大学, 2014.

    LIU Li. study on fractal characteristics of flocs and coagulation mechanism under coal slime water with high concentration[D]. Xuzhou: China University of Mining and Technology, 2014.
    [23]
    焦小淼. 基于絮体特性的煤泥水混凝过程及调控机制研究 [D]. 北京: 中国矿业大学(北京), 2018.

    JIAO Xiaomiao. The coagulation process and regulation mechanism of coal slime water based on the characteristics of floc[D]. Beijing: China University of Mining & Technology-Beijing, 2018.
    [24]
    林 喆, 张文刚. 基于絮凝动力学的煤泥水絮凝过程及其研究方法综述[J]. 中国矿业, 2021, 30(1): 160−167.

    LIN Zhe, ZHANG Wengang. Flocculation process of coal slime water based on flocculation kinetics and its research methods: a critical review[J]. China Mining Magazine, 2021, 30(1): 160−167.
    [25]
    孙美洁,徐志强,涂亚楠,等. 基于多重光散射原理的水煤浆稳定性分析研究[J]. 煤炭学报,2015,40(3):659−664.

    SUN Meijie,XU Zhiqiang,TU Yanan,et al. Research on the stability of CWS based on the multiple light scattering principle[J]. Journal of China Coal Society,2015,40(3):659−664.
    [26]
    黄 根, 郭 宣. 煤化工浓盐水对煤泥水沉降特性的影响[J]. 洁净煤技术, 2019, 25(3): 129−134.

    HUANG Gen, GUO Xuan, Effect of saline wastewater of coal chemical industry on the sedimentation characteristics of coal slurry[J]. Clean Coal Technology, 2019, 25(3): 129−134.
    [27]
    徐宏祥, 汪竞争, 宁可佳, 等. 浓盐水对煤泥水的稳定性影响及沉降作用研究[J]. 矿业科学学报, 2020, 5(4): 467−474.

    XU Hongxiang, WANG Jingzheng, NING Kejia, et al. Effect of concentrated brine on coal slurrystability and sedimentation[J]. Journal of Mining Science and Technology, 2020, 5(4): 467−474.
    [28]
    刘令云. 煤泥水中高岭石颗粒表面水化作用机理研究 [D]. 淮南: 安徽理工大学, 2013.

    LIU Lingyun. Study on the hydration of coal-measured kaolinite surfaces in aqueous solutions[D]. Huainan: Anhui University Of Science & Technology, 2013.
    [29]
    PENG Changsheng,SONG Shaoxian,FORT Tomlinson. Study of hydration layers near a hydrophilic surface in water through AFM imaging[J]. Surface and Interface Analysis,2006,38(5):975−980. doi: 10.1002/sia.2368
    [30]
    CHEN Jun,MIN Fanfei,LIU Lingyun. The interactions between fine particles of coal and kaolinite in aqueous, insights from experiments and molecular simulations[J]. Applied Surface Science,2019,467−468:12−21. doi: 10.1016/j.apsusc.2018.10.130
    [31]
    冯 莉,刘炯天,张明青,等. 煤泥水沉降特性的影响因素分析[J]. 中国矿业大学学报,2010,39(5):671−675.

    FENG Li,LIU Jiongtian,ZHANG Mingqing,et al. Analysis on influencing factors of sedimentation characteristics of coal slime water[J]. Journal of China University of Mining and Technology,2010,39(5):671−675.
    [32]
    陈婷婷,张跃军. 阳离子聚丙烯酰胺P(DAC-AM)的合成研究进展[J]. 高校化学工程学报,2019,33(5):1025−1036. doi: 10.3969/j.issn.1003-9015.2019.05.001

    CHEN Tingting,ZHANG Yuejun. Research progress in the synthesis of cationic polyacrylamide P(DAC-AM)[J]. Journal of Chemical Engineering of Chinese Universities,2019,33(5):1025−1036. doi: 10.3969/j.issn.1003-9015.2019.05.001
    [33]
    黄 博,刘平伟,李伯耿,等. 半连续RAFT分散聚合定制核壳型阳离子聚丙烯酰胺及其絮凝研究[J]. 高校化学工程学报,2020,34(2):447−456. doi: 10.3969/j.issn.1003-9015.2020.02.020

    HUANG Bo,LIU Pingwei,LI Bogeng,et al. Flocculation performances of core-shell cationic polyacrylamides tailored by semi-batch RAFT dispersion copolymerization RAFT[J]. Journal of Chemical Engineering of Chinese Universities,2020,34(2):447−456. doi: 10.3969/j.issn.1003-9015.2020.02.020
    [34]
    路月芹. 基于自保守混凝动力学的煤泥水絮凝沉降研究 [D]. 徐州: 中国矿业大学, 2017.

    LU Yueqin. Research on flocculation sedimentation of coal slurry based on self-preserving coagulation dynamics[D]. Xu zhou: China University of Mining and Technology, 2017.
    [35]
    唐海香, 庞鼎峰, 吴大为. 动力学因素对煤泥水絮凝沉降效果的影响[J]. 煤炭工程, 2006, (8): 78−80.

    TANG Haixiang, PANG Dingfeng, WU Dawei, Dynamics factor affected to flocculation settling results of slime[J]. Coal Engineering, 2006, (8): 78−80.
    [36]
    唐海香,张荣曾. 煤泥水絮凝过程动力分析[J]. 煤炭学报,2005,30(3):371−373. doi: 10.3321/j.issn:0253-9993.2005.03.023

    TANG Haixiang,ZHANG Rongzeng. Analysis of coal slime flocculating velocity[J]. Journal of China Coal Society,2005,30(3):371−373. doi: 10.3321/j.issn:0253-9993.2005.03.023
    [37]
    李朋伟,杨东杰,楼宏铭,等. 利用分散稳定性分析仪研究水煤浆的稳定性[J]. 燃料化学学报,2008,36(5):524−529. doi: 10.3969/j.issn.0253-2409.2008.05.003

    LI Pengwei,YANG Dongjie,LOU Hongming,et al. Study on the stability of coal water slurry using dispersion-stability analyzer[J]. Journal of Fuel Chemistry and Technology,2008,36(5):524−529. doi: 10.3969/j.issn.0253-2409.2008.05.003
    [38]
    黄 波, 王积禄, 聂 瑶. 基于多重散射光理论的高岭石沉降特性研究[J]. 煤炭科学技术, 2016, 44(11): 184−188.

    HUANG Bo, WANG Jilu, NIE Yao. Study on sedimentation characteristics of kaolinite based on multiple scattering light theory[J]. Coal Science and Technology, 2016, 44(11): 184−188.
  • Cited by

    Periodical cited type(4)

    1. 赵毅鑫,杨哲,谢镕澴,王涛,赵良辰. 基于便携式里氏硬度测试的煤冲击倾向性分级判别准则. 煤炭学报. 2025(01): 297-310 .
    2. 高霞,刘飞,杨书朋,张保勇,吴强. 不同含水率及围压条件下含瓦斯煤能量变化规律. 黑龙江科技大学学报. 2024(02): 180-187 .
    3. 任海鹰,温书鹏,侯建军,孔令飞,周泽妮,郭志军. 基于低场核磁共振技术的煤储层孔裂隙分形模型适用性分析. 特种油气藏. 2024(05): 85-94 .
    4. 张村,贾胜,王永乐,赵毅鑫,陈彦宏,王方田. 煤样CT扫描重构研究进展:原理、方法及应用. 煤炭学报. 2024(S2): 800-820 .

    Other cited types(7)

Catalog

    Article views (83) PDF downloads (26) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return