Advance Search
SHI Guomou,ZHANG Lijia,HU Zhenqi,et al. Research on surface movement and deformation characteristics of loess gully landform in Northern Shaanxi[J]. Coal Science and Technology,2023,51(4):157−165. DOI: 10.13199/j.cnki.cst.2021-0626
Citation: SHI Guomou,ZHANG Lijia,HU Zhenqi,et al. Research on surface movement and deformation characteristics of loess gully landform in Northern Shaanxi[J]. Coal Science and Technology,2023,51(4):157−165. DOI: 10.13199/j.cnki.cst.2021-0626

Research on surface movement and deformation characteristics of loess gully landform in Northern Shaanxi

Funds: 

Major Project of Shaanxi Coal Chemical Industry Group Co., LTD. (2018SMHKJ-A-J-03); National Natural Science Foundation of China (41771542)

More Information
  • Received Date: June 14, 2022
  • Available Online: May 14, 2023
  • In order to study the surface movement and deformation characteristics of the collapsible loess gully landform in the northern Shaanxi mining area in the middle reaches of the Yellow River Basin, the N1212 working face in the loess gully area of the Ningtiaota Mine has been systematically monitored for surface subsidence to analyze the high-intensity mining conditions Deformation characteristics of the ground surface subsidence, determine the maximum surface subsidence speed and the maximum subsidence speed lag angle, surface movement time and dynamic surface movement parameters. The results of the study show that the discontinuous deformation and destruction of the surface in high-strength coal mining in the collapsible loess layer in northern Shaanxi are severe, and the loess surface is easily affected by the combined effects of movement and deformation and topographic conditions, resulting in uneven settlement. Under high-strength mining conditions, the surface movement and deformation are severely developed , The maximum surface subsidence value is 5255 mm, the maximum horizontal movement value is 2680 mm, the maximum subsidence speed is 187.4 mm/d, the maximum subsidence coefficient of single coal seam mining is 0.63, the maximum subsidence coefficient of oblique repeated mining is 0.84, the active period is about 55 d, and the period of subsidence is about 55 d. The amount accounts for 97% of the total subsidence, the maximum lagging distance of the down-town velocity is 74 m, and the maximum lagging angle of the sinking velocity is 67°. The above results verify that in the high-intensity mining of shallow coal seams, the surface subsidence is proportional to the geological mining factors when the ground subsidence is severe, the activity period is short, and the mining is repeated. The surface deformation of high-intensity mining in the valley terrain has the characteristics of fast speed, large collapse and heavy damage.

  • [1]
    李树志,李学良,尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题[J]. 煤炭科学技术,2022,50(1):286−292.

    LI Shuzhi,LI Xueliang,YIN Dawei. Several basic issues of ecological restoration of coal mines under background of carbon neutrality[J]. Coal Science and Technology,2022,50(1):286−292.
    [2]
    余学义,穆 驰,张冬冬等. 厚松散层大采高开采地表移动变形规律研究[J]. 煤矿安全,2020,51(4):235−343.

    YU Xueyi,MU Chi,ZHANG Dongdong,et al. Study on the law of surface movement and deformation in thick loose layer and large mining height[J]. Safety in Coal Mines,2020,51(4):235−343.
    [3]
    于 洋,邓喀中. 两淮矿区地表移动角值参数规律研究[J]. 煤炭工程,2012(5):85−87. doi: 10.3969/j.issn.1671-0959.2012.05.031

    YU Yang,DENG Kazhong. Study on the law of surface movement angle parameter in Lianghuai mining area[J]. Coal Engineering,2012(5):85−87. doi: 10.3969/j.issn.1671-0959.2012.05.031
    [4]
    汤伏全,黄 韩,孙学阳,等. 黄土沟壑区开采沉陷对地形因子的影响研究[J]. 干旱区资源与环境,2016,30(5):124−128.

    TANG Fuquan,HUANG Han,SUN Xueyang,et al. The influence of mining subsidence on terrain factors in gully region of loess[J]. Journal of Arid Land Resources and Environment,2016,30(5):124−128.
    [5]
    原 涛. 陕西黄土沟壑区开采沉陷规律研究[D]. 西安: 西安科技大学, 2011.

    YUAN Tao. Study on the mining subsidence law of the loess gully area in Shaanxi[D]. Xi’an: Xi’an University of Science and Technology, 2011.
    [6]
    刘义新, 戴华阳, 郭文兵. 巨厚松散层下深部宽条带开采地表移动规律[J]. 采矿与安全工程学报. 2019, 26(3): 336−340.

    LIU Yixin, DAI Huayang, GUO Wenbing. Surface movement laws of deep wide strip-pillar mining under hick alluvium[J]. Journal of Mining & Safety Engineering, 2009, 26(3): 336−340.
    [7]
    赵兵朝,刘 宾,王建文,等. 柠条塔煤矿叠置开采地表岩移参数分析[J]. 煤矿安全,2016,47(9):213−216.

    ZHAO Bingchao,LIU Bin,WANG Jianwen,et al. Analysis of Surface Rock Movement Parameters in Overlay Mining of Ningtiaota Coal Mine[J]. Safety in Coal Mines,2016,47(9):213−216.
    [8]
    余学义,施文刚,张 平,等. 黄土沟壑区地表移动变形特征分析[J]. 矿山测量,2010(2):38−40. doi: 10.3969/j.issn.1001-358X.2010.02.012

    YU Xueyi,SHI Wengang,ZHANG Ping,et al. Analysis of surface movement and deformation characteristics[J]. Mine Surveying,2010(2):38−40. doi: 10.3969/j.issn.1001-358X.2010.02.012
    [9]
    余学义. 地表移动破坏裂缝特征及其控制方法[J]. 西安矿业学院学报,1996,16(4):295−299.

    YU Xueyi. Feature of destructive rift by surface movement and its control method[J]. Journal of Xi’an University of Science & Tech nology,1996,16(4):295−299.
    [10]
    邹友峰, 邓喀中, 马伟民. 矿山开采沉陷工程[M]. 徐州: 中国矿业大学出版社, 2003.

    ZOU Youfeng, DENG Kazhong, MA Weimin. Mining subsidence engineering[M]. Xuzhou: China University of Mining and Technology Press, 2003.
    [11]
    赵兵朝,刘 飞,凡奋元,等. 黄土沟壑区下斜交叠置开采地表下沉系数研究[J]. 矿业安全与环保,2016,43(5):54−57. doi: 10.3969/j.issn.1008-4495.2016.05.013

    ZHAO Bingchao,LIU Fei,FAN Fenyuan,et al. Study on the surface subsidence coefficient of downslope and overlapping mining in loess gully area[J]. Mining Safety and Environmental Protection,2016,43(5):54−57. doi: 10.3969/j.issn.1008-4495.2016.05.013
    [12]
    汤伏全,乔德京,张 健. 黄土覆盖矿区黄土层湿陷性对开采沉陷的影响研究[J]. 煤炭工程,2015,47(6):88−90,94.

    TANG Fuquan,QIAO Dejing,ZHANG Jian,et al. Study on the influence of collapsibility of loess layer in loess-covered mining area on mining subsidence[J]. Coal Engineering,2015,47(6):88−90,94.
    [13]
    邓喀中, 谭志祥, 姜 岩, 等. 变形监测及沉陷工程学[M]. 徐州: 中国矿业大学出版社, 2014.

    DENG Kazhong, TAN Zhixiang, JIANG Yan, et al. Deformation monitoring and subsidence engineering[M]. Xuzhou: China University of Mining and Technology Press, 2014.
    [14]
    黄成飞. 厚湿陷性黄土层下综放开采地表移动规律研究[D]. 焦作: 河南理工大学, 2011.

    HUANG Chengfei. Research on surface movement law of fully mechanized caving mining under thick collapsible loess[D]. Jiaozuo: Henan University of Technology, 2011.
    [15]
    陈俊杰. 风积沙区高强度开采覆岩与地表变形机理及特征研究[D]. 焦作: 河南理工大学, 2015.

    CHEN Junjie. High-strength mining overlying rock and surface deformation mechanism and characteristics in aeolian sand area[D]. Jiaozuo: Henan University of Technology, 2015.
    [16]
    杜善周. 神东矿区大规模开采的地表移动及环境修复技术研究[D]. 北京: 中国矿业大学(北京), 2010.

    DU Shanzhou. Research on surface movement and environmental restoration technology of large-scale mining in Shendong mining area[D]. Beijing: China University of Mining and Technology-Beijing, 2010.
    [17]
    郭佐宁. 张家峁煤矿15201综采工作面地表移动规律研究[D]. 西安: 西安科技大学, 2015.

    GUO Zuoning. Study on surface movement law of 15201 fully mechanized mining face in Zhangjiamao Coal Mine[D]. Xi’an: Xi’an University of Science and Technology, 2015.
    [18]
    王业显. 大柳塔矿重复采动条件下地表沉陷规律研究[D]. 徐州: 中国矿业大学, 2014.

    WANG Yexian. Research on the law of surface subsidence under repeated mining conditions in Daliuta Mine[D]. Xuzhou: China University of Mining and Technology, 2014.
    [19]
    王 鹏. 韩家湾煤矿大采高开采地表移动变形规律研究[D]. 西安: 西安科技大学, 2012.

    WANG Peng. Research on the law of surface movement and deformation in large mining height mining in Hanjiawan Coal Mine[D]. Xi’an: Xi’an University of Science and Technology, 2012.
    [20]
    张 平. 黄土沟壑区采动地表沉陷破坏规律研究[D]. 西安: 西安科技大学, 2010.

    ZHANG Ping. Research on the law of ground subsidence and destruction caused by mining in loess gully area[D]. Xi’an: Xi’an University of Science and Technology, 2010.
    [21]
    滕永海, 唐志新, 郑志刚. 综采放顶煤地表沉陷规律研究及应用[M]. 北京: 煤炭工业出版社, 2009.

    TENG Yonghai, TANG Zhixin, ZHENG Zhigang. Research and application of surface subsidence law of fully mechanized caving mining[M]. Beijing: Coal Industry Press, 2009.
    [22]
    李德海,许国胜,余华中. 厚松散层煤层开采地表动态移动变形特征研究[J]. 煤炭科学技术,2014,42(7):103−106.

    LI Dehai,XU Guosheng,YU Huazhong. Research on dynamic surface movement and deformation characteristics of thick loose seam mining[J]. Coal Science and Technology,2014,42(7):103−106.
    [23]
    郭文兵,黄成飞,陈俊杰. 厚湿陷黄土层下综放开采动态地表移动特征[J]. 煤炭学报,2010,35(S1):38−43. doi: 10.13225/j.cnki.jccs.2010.s1.014

    GUO Wenbing,HUANG Chengfei,CHEN Junjie. Dynamic surface movement characteristics of fully mechanized caving mining under thick collapsible loess[J]. Journal of China Coal Society,2010,35(S1):38−43. doi: 10.13225/j.cnki.jccs.2010.s1.014
    [24]
    黄森林,余学义,赵 雪,等. 湿陷性黄土开采损害规律及控制方法研究[J]. 矿业安全与环保,2006,35(5):11−12. doi: 10.3969/j.issn.1008-4495.2006.05.003

    HUANG Senlin,YU Xueyi,ZHAO Xue,et al. Research on the damage law and control method of collapsible loess mining[J]. Mining Safety and Environmental Protection,2006,35(5):11−12. doi: 10.3969/j.issn.1008-4495.2006.05.003
  • Cited by

    Periodical cited type(14)

    1. 赵娅,管玉,贾迪. 基于深度学习的微观剩余油赋存形态分类识别综述. 计算机系统应用. 2025(01): 26-36 .
    2. 杨焜,王宏伟,张夫净,李进,张之好,李正龙. 多尺度复杂环境下的锚孔定位方法. 矿业研究与开发. 2025(01): 126-134 .
    3. 李梅,张鹏鹏,李元琛. AI赋能智能矿山:应用场景及未来展望. 煤炭经济研究. 2025(02): 161-169 .
    4. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 . 本站查看
    5. 王登科,王龙航,秦亚光,位乐,曹塘根,李文睿,李璐,陈旭,夏玉玲. 基于VRA-UNet网络的煤岩组合体裂隙识别与三维重构. 煤炭科学技术. 2025(02): 96-108 . 本站查看
    6. 吴斌,丁丽霞,姜广宇. 基于改进YOLOv5的实验教学课堂学生行为识别. 中国现代教育装备. 2025(09): 19-23 .
    7. 卢才武,宋义良,江松,章赛,王懋,纪凡. 基于改进U-net的少样本煤岩界面图像分割方法. 金属矿山. 2024(01): 149-157 .
    8. 李季,马潇锋,吴洁琪,强旭博,武荔阳,闫博,董继辉,陈朝森. 融合钻孔地质信息的煤岩图像识别方法. 工矿自动化. 2024(08): 38-43+68 .
    9. 田培忠. 基于ResNet网络层数的露天矿道路识别效果研究. 露天采矿技术. 2024(05): 59-64 .
    10. 张传伟,何正伟,路正雄,李林岳,龚凌霄,张刚强,潘巧娜. 基于MRU-Net++的极薄煤层综采面煤岩界面图像识别. 煤炭科学技术. 2024(11): 103-116 . 本站查看
    11. 武强,张帅,杜沅泽,徐华,赵颖旺. 基于MRAU视频分割模型的矿井涌(突)水风险识别方法. 煤炭科学技术. 2024(11): 17-28 . 本站查看
    12. 吴安坤,郭军成,王强,冷宇. 基于改进DeepLabv3+网络的气象卫星影像雷暴识别. 气象科技. 2024(06): 775-786 .
    13. 周素静,康楠,余敏. 基于变形分数阶Lorenz混沌系统的煤岩界面图像分割方法. 金属矿山. 2024(12): 246-251 .
    14. 解北京,李恒,董航,栾铮,张奔,李晓旭. 基于多尺度特征融合井下猴车载人状态的智能识别算法与应用. 煤炭科学技术. 2024(12): 272-286 . 本站查看

    Other cited types(14)

Catalog

    Article views (98) PDF downloads (30) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return