Advance Search

XUN Bohui,LYU Yiqing,YAO Xing. Comparison of prediction models for the development height of water-conducting fractured zone[J]. Coal Science and Technology,2023,51(3):190−200

. DOI: 10.13199/j.cnki.cst.2021-0557
Citation:

XUN Bohui,LYU Yiqing,YAO Xing. Comparison of prediction models for the development height of water-conducting fractured zone[J]. Coal Science and Technology,2023,51(3):190−200

. DOI: 10.13199/j.cnki.cst.2021-0557

Comparison of prediction models for the development height of water-conducting fractured zone

Funds: 

Natural Science Foundation of Shanxi Province (201701D121015)

More Information
  • Received Date: July 31, 2022
  • Available Online: April 26, 2023
  • In order to improve the accuracy of the prediction of the development height of the water-conducting fissure zone, by collecting the measured data of the lead height in the areas with similar geological and mining conditions in the past, the four factors of mining height, burial depth, inclination angle and working face slope length are comprehensively analyzed as the lead height of the algorithm model. The main influencing factors are to analyze and study the development characteristics of water-conducting fissures in the mining overburden by using a combination of engineering detection, machine learning and numerical simulation. Through drilling experiments and numerical control camera technology, the development height of the water-conducting fracture zone under the conditions of fully-mechanized mining in shallow coal seams was measured; by constructing an adaptive particle swarm optimization algorithm based on optimized least squares support vector machine regression algorithm (APSO-LSSVR) and UDEC The numerical simulation of the lead height prediction model, combined with the actual measured lead height data, determines the calculation method of the damage height of the overlying strata in Huaning Coal Mine. The results show that the measured development height of the water-conducting fracture zone in the study area is between 60.3~90.6 m; the goodness of fit between the predicted result of the lead height model based on the APSO-LSSVR algorithm and the true value is 94.79%, and the root mean square error is 1.6523 , The prediction accuracy is high, and it is applied to the prediction of the height of the water-conducting fissure zone of different working faces in the study area. Compared with the measured data, the average relative error of this model is 1.36%. Compared with the traditional UDEC numerical simulation prediction method, Its accuracy is relatively improved by 9.03%. It can be seen that the support vector machine model optimized by the adaptive particle swarm algorithm has higher processing performance for data collections with smaller data characteristics, can better reflect the development of water-conducting fissures, and can meet actual mining needs; it will be based on APSO -LSSVR's water-conducting fracture zone development height prediction model is applied to the 22109 and 22110 working faces to be mined in the study area, and it is concluded that the guided height of the 22109 working face is 62.7 m, and the guided height of the 22110 working face is 67.3 m.

  • [1]
    高延法. 岩移“四带”模型与动态位移反分析[J]. 煤炭学报,1996,21(1):51−56. doi: 10.3321/j.issn:0253-9993.1996.01.010

    GAO Yanfa. “Four-zone” model of rockmass movement and back analysis of dynamic displacement[J]. Journal of China Coal Society,1996,21(1):51−56. doi: 10.3321/j.issn:0253-9993.1996.01.010
    [2]
    武 强,许 珂,张 维. 再论煤层顶板涌(突)水危险性预测评价的“三图-双预测法”[J]. 煤炭学报,2016,41(6):1341−1347. doi: 10.13225/j.cnki.jccs.2015.1210

    WU Qiang,XU Ke,ZHANG Wei. Further research on “three maps-two predictions” method for prediction on coal seam roof water bursting risk[J]. Journal of China Coal Society,2016,41(6):1341−1347. doi: 10.13225/j.cnki.jccs.2015.1210
    [3]
    张宏伟,朱志洁,霍利杰,等. 特厚煤层综放开采覆岩破坏高度[J]. 煤炭学报,2014,39(5):816−821.

    ZHANG Hongwei,ZHU Zhijie,HUO Lijie,et al. Overburden failure height of superhigh seam by fully mechanized caving method[J]. Journal of China Coal Society,2014,39(5):816−821.
    [4]
    黄万朋,高延法,王 波,等. 覆岩组合结构下导水断裂带演化规律与发育高度分析[J]. 采矿与安全工程学报,2017,34(2):330−335.

    HUANG Wanpeng,GAO Yanfa,WANG Bo,et al. Evolution rule and development height of permeable fractured zone under combined-strata structure[J]. Journal of Mining & Safety Engineering,2017,34(2):330−335.
    [5]
    翟志伟,孟秀峰,武志高,等. 基于钻孔成像观测的导水断裂带高度确定方法研究[J]. 煤炭工程,2020,52(11):89−93.

    ZHAI Zhiwei,MENG Xiufeng,WU Zhigao,et al. Height determination of water flowing fractured zone based on borehole imaging observation[J]. Coal Engineering,2020,52(11):89−93.
    [6]
    高保彬, 刘云鹏, 潘家宇, 等. 水体下采煤中导水断裂带高度的探测与分析[J]. 岩石力学与工程学报, 2014, 33(S1): 3384−3390.

    GAO Baobin, LIU Yunpeng, PAN Jiayu, et al. Detection and analysis of height of water flowing fractured zone in underwater mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3384−3390.
    [7]
    杜君武,董振波. 雅店煤矿4号煤层开采导水断裂带高度研究[J]. 矿业安全与环保,2018,45(5):78−82,86. doi: 10.3969/j.issn.1008-4495.2018.05.017

    DU Junwu,DONG Zhenbo. Research on the height of water flowing fractured zone in No. 4 coal seam of yadian coal mine[J]. Mining Safety And Environmental Protection,2018,45(5):78−82,86. doi: 10.3969/j.issn.1008-4495.2018.05.017
    [8]
    王创业, 薛瑞雄, 朱振龙. 不同采高和关键层对导水断裂带发育的影响[J]. 煤矿安全, 2016, 47(3): 169−171.

    WANG Chuangye, XUE Ruixiong, ZHU Zhenlong, Influence of different mining height and key stratum on development of water flowing fracture zone[J]. Safety in Coal Mines, 2016, 47(3): 169−171.
    [9]
    樊振丽, 刘治国. 厚黏土层软弱覆岩采动破坏的泥盖效应[J]. 采矿与安全工程学报, 2020, 37(6): 1196−1204.

    FAN Zhenli, LIU Zhiguo, Mud cover effect of mining-induced failure of soft overburden in thick clay strata[J]. Journal of Mining and Safety Engineering, 2020, 37(6): 1196−1204.
    [10]
    魏宗勇,李树刚,林海飞,等. 大采高综采覆岩断裂演化特征三维实验研究[J]. 西安科技大学学报,2020,40(4):589−598.

    WEI Zongyong,LI Shugang,LIN Haifei,et al. Three-dimensional experimental study on evolution characteristics of overburden fractures in fully mechanized mining with large mining height[J]. Journal of Xi’an University of Science and Technology,2020,40(4):589−598.
    [11]
    建筑物、水体、铁路及主要井巷煤柱留设与压煤开采 规范[M]. 北京: 煤炭工业出版社, 2017.
    [12]
    WANG S M. A brief review of the methods determining the height of permeable fracture zone[J]. Hydrogeology & Engineering Geology, 2006.
    [13]
    李沂杭. 华宁矿区综放开采条件下采场覆岩移动变形规律研究[D]. 太原: 太原理工大学, 2019.

    LI Yihang. Study on the law of overburden movement anddeformation of stope under fully mechanized cavingmining conditions in huaning mining area[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [14]
    刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报, 1995, 20(1): 1−5.

    LIU Tianquan, Influence of mining activities on mine rockmass and control engineering[J]. Journal of China Coal Society, 1995, 20(1): 1−5.
    [15]
    许家林, 朱卫兵, 王晓振. 基于关键层位置的导水断裂带高度预计方法[J]. 煤炭学报, 2012, 37(5): 762−769.

    XU Jialin, ZHU Weibing, WANG Xiaozhen, New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society, 2012, 37(5): 762−769.
    [16]
    尹尚先, 徐 斌, 徐 慧, 等. 综采条件下煤层顶板导水裂缝带高度计算研究[J]. 煤炭科学技术, 2013, 41(9): 138−142.

    YIN Shangxian, XU Bin, XU Hui, et al, Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J]. Coal Science and Technology, 2013, 41(9): 138−142.
    [17]
    WANG Zhongchang,WANG Chuan,WANG Zechuan. The hazard analysis of water inrush of mining of thick coal seam under reservoir based on entropy weight evaluation method[J]. Geotechnical and Geological Engineering,2018,36(5):3019−3028. doi: 10.1007/s10706-018-0520-0
    [18]
    张玉鹏, 张玉军, 刘毅涛, 等. 蒙西深部厚煤层大采高综采面覆岩破坏高度研究[J]. 中国安全科学学报, 2020, 30(8): 37−43.

    ZHANG Yupeng, ZHANG Yujun, LIU Yitao, et al, Study on overburden failure height of fully mechanized mining face in Mengxi deep mining area[J]. China Safety Science Journal, 2020, 30(8): 37−43.
    [19]
    袁 峰, 申 涛, 谢晓深, 等. 基于深度学习的地震多属性融合技术在导水断裂带探测中的应用[J/OL]. 煤炭学报: 1-11[2021-05-10]. http://kns.cnki.net/kcms/detail/11.2190.TD.20201022.1716.004.html.

    YUAN Feng, SHEN Tao, XIE Xiaoshen, et al. Application of deep learning-based seismic multi-attribute fusion technology in the detection of water conducting fissure zone[J]. Journal of China Coal Society, 1-11[2021-05-10]. http://kns.cnki.net/kcms/detail/11.2190.TD.20201022.1716.004.html.
    [20]
    马亚杰,武 强,章之燕,等. 煤层开采顶板导水断裂带高度预测研究[J]. 煤炭科学技术,2008,402(5):59−62.

    MA Yajie,WU Qiang,ZHANG Zhiyan,et al. Research on prediction of water conducted fissure height in roof of coal mining seam[J]. Coal Science and Technology,2008,402(5):59−62.
    [21]
    薛建坤,王 皓,赵春虎,等. 鄂尔多斯盆地侏罗系煤田导水断裂带高度预测及顶板充水模式[J]. 采矿与安全工程学报,2020,37(6):1222−1230.

    XUE Jiankun,WANG Hao,ZHAO Chunhu,et al. Prediction of the height of water-conducting fracture zone and water-filling model of roof aquifer in Jurassic coalfield in Ordos Basin[J]. Journal of Mining & Safety Engineering,2020,37(6):1222−1230.
    [22]
    张宏伟,朱志洁,霍丙杰,等. 基于改进的FOA-SVM导水断裂带高度预测研究[J]. 中国安全科学学报,2013,23(10):9−14. doi: 10.3969/j.issn.1003-3033.2013.10.002

    ZHANG Hongwei,ZHU Zhijie,HUO Bingjie,et al. Research on the height prediction of water-conducting fracture zone based on improved FOA-SVM[J]. China Safety Science Journal,2013,23(10):9−14. doi: 10.3969/j.issn.1003-3033.2013.10.002
    [23]
    张风达,申宝宏. 深部煤层底板突水危险性预测的PSO_SVM模型[J]. 煤炭科学技术,2018,46(7):61−67,228.

    ZHANG Fengda,SHEN Baohong. PSO-SVM prediction model for evaluating water inrush risk from deep coal seam floor[J]. Coal Science and Technology,2018,46(7):61−67,228.
    [24]
    刘 鹏,魏卉子,景江波,等. 基于增强CART回归算法的煤矿瓦斯涌出量预测技术[J]. 煤炭科学技术,2019,47(11):116−122.

    LIU Peng,WEI Huizi,JING Jiangbo,et al. Predicting technology of gas emission quantity in coal mine based on enhanced CART regression algorithm[J]. Coal Science and Technology,2019,47(11):116−122.
    [25]
    李振华,许延春,李龙飞,等. 基于BP神经网络的导水断裂带高度预测[J]. 采矿与安全工程学报,2015,32(6):905−910.

    LI Zhenhua,XU Yanchun,LI Longfei,et al. Prediction of the height of water-conducting fracture zone based on BP neural network[J]. Journal of Mining & Safety Engineering,2015,32(6):905−910.
    [26]
    谢晓锋,李夕兵,尚雪义,等. PCA-BP神经网络模型预测导水断裂带高度[J]. 中国安全科学学报,2017,27(3):100−105.

    XIE Xiaofeng,LI Xibing,SHANG Xueyi,et al. PCA-BP neural network model predicts the height of water-conducting fracture zone[J]. China Safety Science Journal,2017,27(3):100−105.
    [27]
    顾凯冬. 基于灰狼算法优化最小二乘支持向量机的调制信号识别研究[D]. 南京: 南京邮电大学, 2018.

    GU Kaidong. The research on automatic modulationclassification based on grey wolf optimizer leastsquare support vector machine[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018.
    [28]
    侯恩科, 姚 星, 车晓阳, 等. 基于KPCA-APSO-ELM的矿井涌水水源识别[J/OL]. 安全与环境学报: 1-9[2021-05-19]. https://doi.org/10.13637/j.issn.1009-6094.2020.1335.

    HOU Enke, YAO Xing, CHE Xiaoyang, et al. Identification method of mine water inrush sources based on KPCA-APSO-ELM[J]. Journal of Safety and Environment: 1-9[2021-05-19]. https://doi.org/10.13637/j.issn.1009-6094.2020.1335.
    [29]
    朱 伟,滕永海,唐志新. 潞安矿区综采断裂带发育高度规律实测研究[J]. 煤炭科学技术,2017,45(7):167−171.

    ZHU Wei,TENG Yonghai,TANG Zhixin,et al. In-site study on development rule of fractured zone height by fully-mechanized mining in Lu’an Minefield[J]. Coal Science and Technology,2017,45(7):167−171.
  • Related Articles

    [1]LI Huaizhan, SUN Jingchao, GUO Guangli, TANG Chao, ZHENG Hui, ZHANG Liangui, MENG Fanzhen. Evolution characteristics and development height prediction method of water-conducting crack zone in thick weak cemented overlying strata[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(2): 289-300. DOI: 10.12438/cst.2023-1931
    [2]WANG Xu, YIN Shangxian, XU Bin, CAO Min, ZHANG Runqi, TANG Zhongyi, HUANG Wenxian, LI Wenlong. Study on height optimization prediction model of overburden water-conducting fracture zone under fully mechanized mining[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 284-297. DOI: 10.13199/j.cnki.cst.2022-1530
    [3]WU Jianhong, PAN Junfeng, GAO Jiaming, YAN Yaodong, MA Hongyuan. Research on prediction of the height of water-conducting fracture zone in Huanglong Jurassic Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 231-241. DOI: 10.13199/j.cnki.cst.2023-0151
    [4]LI Qi, QIN Yujin, GAO Zhongning. Research on height prediction of “two zones” of overburdcn based on BP neural network in Wuyang Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(8): 53-59.
    [5]YANG Jianhui, HU Dongrong, ZHU Chenhong, ZHU Jianghong. Study on numerical simulation on shaped charge blasting parameters of peripheral holes[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (1).
    [6]LUO Zu-jiang LI Zhao REN Hu-jun, . Numerical simulation research on prediction of mine inflow[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (1).
    [7]ZHANG Guo-qing HUANG Ting, . Prediction on Water Flow in Goaf at Initial Mining Period of Fully-Mechanized Top Coal Caving Face[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (12).
    [8]Study on Development Height of Water Flow Crack Zone in Roof Above Fully Mechanized One Passing Full Seam Mining Face[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (6).
    [9]Analysis on Seepage Features in Goaf and Numerical Simulation Prediction of Flow Field[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (9).
    [10]Study and Application of Gas Content to Prediction of Coal and Gas Outburst[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).
  • Cited by

    Periodical cited type(7)

    1. 李胜利. 网络并行高密度电法实测煤层“上三带”覆岩变形特征. 能源科技. 2025(03)
    2. 徐东晶,窦旋,李业,夏志村. 山东矿区矿井导水裂隙带发育高度预测模型研究. 矿业科学学报. 2025(01): 86-94 .
    3. 张胜军,丁亚恒,姜春露,李江. 深埋大采长工作面导水裂隙带发育高度研究. 中国矿业. 2025(05): 198-205 .
    4. 李建文,赵文,吴振坤,徐小兵,王庆涛,段隆臣. 煤矿采空区覆岩“三带”智能识别方法. 煤田地质与勘探. 2024(04): 164-171 .
    5. 王毅,周余,张丁丁,王禹,杨珍,王伟. 综采工作面采动覆岩导水裂隙带发育高度综合研究. 矿业安全与环保. 2024(05): 132-141 .
    6. 刘奇,梁智昊,訾建潇. SMOGN过采样下导水裂隙带高度的MPSO-BP预测模型. 煤田地质与勘探. 2024(11): 72-85 .
    7. 郭瑞瑞,靳志龙. 神东矿区浅埋煤层覆岩运移与导水裂缝带发育规律研究. 中国煤炭. 2022(S1): 224-234 .

    Other cited types(8)

Catalog

    Article views (152) PDF downloads (72) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return