Advance Search

CHEN Xiaojing. Construction of intelligent prevention and control of coal mine fire based on “cloud-edge-end” cooperation[J]. Coal Science and Technology,2022,50(12):136−143

. DOI: 10.13199/j.cnki.cst.2021-0488
Citation:

CHEN Xiaojing. Construction of intelligent prevention and control of coal mine fire based on “cloud-edge-end” cooperation[J]. Coal Science and Technology,2022,50(12):136−143

. DOI: 10.13199/j.cnki.cst.2021-0488

Construction of intelligent prevention and control of coal mine fire based on “cloud-edge-end” cooperation

Funds: 

Special Funding Project for Technology Innovation and Entrepreneurship of Tian Di Technology Co., Ltd. (2019-TD-ZD007)

More Information
  • Received Date: January 17, 2022
  • Available Online: March 08, 2023
  • In view of the problems such as incomplete data collection and implementation layer, non embodiment of edge computing function, and unclear construction standards of integrated prevention and control platform during the construction of intelligent mine fire prevention and control subsystem, an architecture model based on “cloud-edge-end” collaboration was proposed in comparison with relevant provisions of national and local coal mine intelligent construction standards for fire prevention and control. Fire data sensing devices such as optical fiber temperature measurement, MEMS temperature sensors and inspection robot, as well as fire execution control devices such as grouting, nitrogen injection, automatic sprinkler and roadway rapid closure device were added to form the data sensing and execution control layer, which is responsible for sensing fire data information and executing control commands issued by cloud computing center or edge side; Edge computing devices were added to form the edge computing layer to realize the linkage control of on-site fire prevention and extinguishing devices; with the “Intelligent Mine Basic Information Platform” as the middle platform base, intelligent mine fire prevention and control business application was established to form a platform prevention and control layer, expert knowledge base was integrated, and professional analysis on key indicators of fire prevention and control were conducted. A comprehensive prevention and control system for intelligent analysis at the cloud platform layer, nearby analysis and control at the edge layer, and data collection and execution at the perception and execution layer were formed. The opposition and unity relationship among the three layers of “cloud-edge-end” fire prevention and control system were dialectically analyzed. Key devices and technologies such as wireless low-power fire sensor, patrol robot, monitoring point deployment optimization in fire hazard area, edge side supporting physical devices, edge side fire early warning algorithm, decision edge calculation algorithm, edge node deployment strategy, comprehensive prevention and control platform, fire data governance, fire early warning and decision model were discussed.

  • [1]
    王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1−27.

    WANG Guofa,REN Huaiwei,PANG Yihui,et al. Research and engineering progress of intelligent coal mine technical system in early stages[J]. Coal Science and Technology,2020,48(7):1−27.
    [2]
    王国法,杜毅博,任怀伟,等. 智能化煤矿顶层设计研究与实践[J]. 煤炭学报,2020,45(6):1909−1924. doi: 10.13225/j.cnki.jccs.zn20.0284

    WANG Guofa,DU Yibo,REN Huaiwei,et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society,2020,45(6):1909−1924. doi: 10.13225/j.cnki.jccs.zn20.0284
    [3]
    王国法,杜毅博. 煤矿智能化标准体系框架与建设思路[J]. 煤炭科学技术,2020,48(1):1−9. doi: 10.13199/j.cnki.cst.2020.01.001

    WANG Guofa,DU Yibo. Coal mine intelligent standard system framework and construction ideas[J]. Coal Science and Technology,2020,48(1):1−9. doi: 10.13199/j.cnki.cst.2020.01.001
    [4]
    钱建生,胡青松. 智能煤矿建设路线与工程实践[J]. 煤炭科学技术,2020,48(7):109−117.

    QIAN Jiansheng,HU Qingsong. Construction routes and practice of intelligent coal mine[J]. Coal Science and Technology,2020,48(7):109−117.
    [5]
    丁恩杰,廖玉波,张 雷,等. 煤矿信息化建设回顾与展望[J]. 工矿自动化,2020,46(7):5−11.

    DING Enjie,LIAO Yubo,ZHANG Lei,et al. Review and prospect of coal mine information construction[J]. Industry and Mine Automation,2020,46(7):5−11.
    [6]
    卢瑞翔,苏贺涛,康 宁,等. 基于专家决策支持的煤自燃火灾防控系统设计[J]. 武汉理工大学学报(信息与管理工程版),2020,42(5):403−408.

    LU Ruixiang,SU Hetao,KANG Ning,et al. Design of coal spontaneous combustion fire prevention and control system supported by expert decision- making[J]. Journal of WUT(Information & Management Engineering),2020,42(5):403−408.
    [7]
    梁运涛,王 伟. 矿井自燃火灾超前协同防控技术[J]. 煤矿安全,2020,51(10):39−45. doi: 10.13347/j.cnki.mkaq.2020.10.007

    LIANG Yuntao,WANG Wei. Advanced cooperative prevention and control technology of mine spontaneous combustion fire disaster[J]. Safety in Coal Mines,2020,51(10):39−45. doi: 10.13347/j.cnki.mkaq.2020.10.007
    [8]
    梁运涛,辛全昊,王树刚,等. 煤自然发火过程颗粒堆积体结构形态演化实验研究[J]. 煤炭学报,2020,45(4):1398−1405.

    LIANG Yuntao,XIN Quanhao,WANG Shugang,et al. Structure variation of coal particle packing during the spontaneous combustion[J]. Journal of China Coal Society,2020,45(4):1398−1405.
    [9]
    郑学召,回 硕,文 虎,等. 矿井火灾孕灾机制及防控技术研究进展[J]. 煤矿安全,2017,48(10):148−151,155.

    ZHENG Xuezhao,HUI Shuo,WEN Hu,et al. Research Progress on Preventing and Controlling Technology and Disaster-forming Mechanism of Mine Fire[J]. Safety in Coal Mines,2017,48(10):148−151,155.
    [10]
    申 林. 煤矿外因火灾险兆事件致因及防控对策研究[D]. 西安: 西安科技大学, 2015.

    SHEN Lin. The Study on Causes of External Fire Near-Miss in Coal Mine and Its Control Measures[D]. Xi’an: Xi’an University of science and technology, 2015.
    [11]
    孙继平,宋 姝. 基于遗传算法实现聚类的煤矿内因火灾识别[J]. 湖南科技大学学报(自然科学版),2006(1):1−4.

    SUN Jiping,SONG Shu. Clustering in early recognition of coal mine internal- caused fire based on genetic algorithm[J]. Journal of Hunan University of Science & Technology(Natural Science Edition),2006(1):1−4.
    [12]
    李兴东,王少强,陈洋蕾,等. 煤矿内因火灾危险性评价新耦合模型[J]. 煤矿安全,2018,49(7):159−163. doi: 10.13347/j.cnki.mkaq.2018.07.042

    LI Xingdong,WANG Shaoqiang,CHEN Yanglei,et al. New Coupling Model for Risk Assessment of Spontaneous Fire in Coal Mine[J]. Safety in Coal Mines,2018,49(7):159−163. doi: 10.13347/j.cnki.mkaq.2018.07.042
    [13]
    秦忠诚,陈光波,李 谭,等. “AHP+熵权法”的CW-TOPSIS煤矿内因火灾评价模型[J]. 西安科技大学学报,2018,38(2):193−201. doi: 10.13800/j.cnki.xakjdxxb.2018.0204

    QIN Zhongcheng. CHEN Guangbo, LI Tan, et al. CW-TOPSIS mine internal caused fire evaluation model of “AHP+entropy weight method”[J]. Journal of Xi'an University of Science and Technology,2018,38(2):193−201. doi: 10.13800/j.cnki.xakjdxxb.2018.0204
    [14]
    王君莉. 煤矿电气火灾风险的PHA-LEC评估模型及其应用[J]. 煤矿机械,2017,38(12):138−140. doi: 10.13436/j.mkjx.201712049

    WANG Junli. Risk assessment model for coal mine electrical fire based on PHALEC and application[J]. Coal Mine Machinery,2017,38(12):138−140. doi: 10.13436/j.mkjx.201712049
    [15]
    陈 雅,蒋仲安,谭 聪. 基于危机征兆的煤矿内因火灾预测模型的研究[J]. 矿业安全与环保,2015,42(1):56−59. doi: 10.3969/j.issn.1008-4495.2015.01.015

    CHEN Ya,JIANG Zhong’an,TAN Cong. Study on prediction model of coal mine spontaneous combustion based on crisis symptoms[J]. Mine Safety & Environmental Protection,2015,42(1):56−59. doi: 10.3969/j.issn.1008-4495.2015.01.015
    [16]
    刘永立,杨 虎. 煤矿火灾应急救援演练虚拟现实系统研究[J]. 矿业安全与环保,2013,40(6):22−25. doi: 10.3969/j.issn.1008-4495.2013.06.008

    LIU Yongli,YANG Hu. Study on virtual reality system for mine fire emergency rescue training[J]. Mine Safety & Environmental Protection,2013,40(6):22−25. doi: 10.3969/j.issn.1008-4495.2013.06.008
    [17]
    张园园,孙 麟,刘 明. 梯形模糊事故树预测算法的改进及应用[J]. 中国安全科学学报,2020,30(11):156−161. doi: 10.16265/j.cnki.issn1003-3033.2020.11.023

    ZHANG Yuanyuan,SUN Lin,LIU Ming. Improvement and application of trapezoidal fuzzy fault tree prediction algorithm[J]. China Safety Science Journal,2020,30(11):156−161. doi: 10.16265/j.cnki.issn1003-3033.2020.11.023
    [18]
    文 虎,张 铎,郑学召. 煤矿平巷火灾数值模拟及其特征参数研究[J]. 煤炭科学技术,2017,45(4):62−67. doi: 10.13199/j.cnki.cst.2017.04.011

    WEN Hu,ZHANG Duo,ZHENG Xuezhao. Study on numerical simulation and feature parameters of fire disasters occurred in mine roadway[J]. Coal Science and Technology,2017,45(4):62−67. doi: 10.13199/j.cnki.cst.2017.04.011
    [19]
    邢 震. 浅埋厚煤层地表漏风对采空区煤自燃影响数值模拟研究[J]. 工矿自动化,2021,47(2):80−87,103.

    XING Zhen. Numerical simulation study on the influence of surface air leakage in shallow thick coal seam on coal spontaneouscombustion in goaf[J]. Industry and Mine Automation,2021,47(2):80−87,103.
    [20]
    张小翌,王德明,杨雪花. 煤矿硐室电缆火灾数值模拟[J]. 工矿自动化,2019,45(3):52−55. doi: 10.13272/j.issn.1671-251x.2018060049

    ZHANG Xiaoyi,WANG Deming,YANG Xuehua. Numerical simulation of cable fire in coal mine chamber[J]. Industry and Mine Automation,2019,45(3):52−55. doi: 10.13272/j.issn.1671-251x.2018060049
    [21]
    路新惠. 煤矿火灾烟气流动传播过程仿真研究[J]. 工业安全与环保,2016,42(6):14−16. doi: 10.3969/j.issn.1001-425X.2016.06.004

    LU Xinhui. Smoke flow propagation simulation research of coal mine fires[J]. Industrial Safety and Environmental Protection,2016,42(6):14−16. doi: 10.3969/j.issn.1001-425X.2016.06.004
    [22]
    徐劭懿,李 梅,毛善君,. 带约束条件的煤矿火灾避灾路线算法研究[J]. 煤炭科学技术,2018,46(5):59,173−178. doi: 10.13199/j.cnki.cst.2018.05.028

    XU Shaoyi,LI Mei,MAO Shanjun,et al. Study on escape route algorithm with constraints during coal mine fire[J]. Coal Science and Technology,2018,46(5):59,173−178. doi: 10.13199/j.cnki.cst.2018.05.028
    [23]
    旷永华. 分布式激光火情监测系统应用及其测点部署优化[J]. 矿业安全与环保,2020,47(5):99−102. doi: 10.19835/j.issn.1008-4495.2020.05.020

    KUANG Yonghua. Application and optimization of test point deployment of distributed laser fire monitoring system[J]. Mining Safety & Environmental Protection,2020,47(5):99−102. doi: 10.19835/j.issn.1008-4495.2020.05.020
    [24]
    陈 洋,王 伟. 采空区自燃火灾预报方法与监测新技术[J]. 煤矿安全,2021,52(8):118−122.

    CHEN Yang,WANG Wei. Prediction method and new monitoring technology of goaf spontaneous combustion fire[J]. Safety in Coal Mines,2021,52(8):118−122.
    [25]
    邢 震. 综放工作面采空区自燃危险区域监测技术及应用研究[J]. 煤炭工程,2017,49(11):130−132,137.

    XING Zhen. Research on monitoring technology for danger zone of spontaneous combustion in goaf of fully-mechanized top-coal caving face[J]. Coal Engineering,2017,49(11):130−132,137.
    [26]
    冯加宇,唐 洪,贺 涛,等. 基于红外热成像的煤矿输送带火灾监测预警技术研究[J]. 煤炭技术,2016,35(12):280−282. doi: 10.13301/j.cnki.ct.2016.12.107

    FENG Jiayu,TANG Hong,HE Tao,et al. Infrared image monitoring and early-warning technology of coal mine conveyor belt fire[J]. Coal Technology,2016,35(12):280−282. doi: 10.13301/j.cnki.ct.2016.12.107
    [27]
    梁运涛,侯贤军,罗海珠,等. 我国煤矿火灾防治现状及发展对策[J]. 煤炭科学技术,2016,44(6):1−6,13.

    LIANG Yuntao,HOU Xianjun,LUO Haizhu,et al. Development countermeasures and current situation of coal mine fire prevention & extinguishing in China[J]. Coal Science and Technology,2016,44(6):1−6,13.
    [28]
    刘红威,王 飞. 井下细水雾防灭火技术应用现状及发展趋势[J]. 煤炭科学技术,2015,43(10):86−92.

    LIU Hongwei,WANG Fei. Application status and development tendency of fire prevention and extinguishing technology with water mist in underground mine[J]. Coal Science and Technology,2015,43(10):86−92.
    [29]
    王丽威. 井下车载灭火系统应用现状及发展趋势[J]. 煤矿安全,2019,50(9):126−129.

    WANG Liwei. Application situation and development trend of underground vehicular fire-extinguishing system[J]. Safety in Coal Mines,2019,50(9):126−129.
    [30]
    何景强. 矿用防爆无轨胶轮车火灾预防对策及自动灭火系统[J]. 煤矿安全,2019,50(4):191−194. doi: 10.13347/j.cnki.mkaq.2019.04.046

    HE Jingqiang. Fire protection countermeasures and application of automatic fire extinguishing system for explosion-proof trackless rubber-tyred vehicle[J]. Safety in Coal Mines,2019,50(4):191−194. doi: 10.13347/j.cnki.mkaq.2019.04.046
    [31]
    韩 兵,杨宏伟,高 宏,等. 复合惰性气体采空区自然发火防治技术[J]. 煤矿安全,2019,50(3):73−76. doi: 10.13347/j.cnki.mkaq.2019.03.018

    HAN Bing,YANG Hongwei,GAO Hong,et al. Research on prevention and control technology of spontaneous combustion in goaf based on composite inert gas[J]. Safety in Coal Mines,2019,50(3):73−76. doi: 10.13347/j.cnki.mkaq.2019.03.018
    [32]
    史波波. 煤矿液氮防灭火技术应用及发展趋势[J]. 煤矿安全,2014,45(10):154−157. doi: 10.13347/j.cnki.mkaq.2014.10.047

    SHI Bobo. Development tendency and application of coal mine liquid nitrogen fire prevention technology[J]. Safety in Coal Mines,2014,45(10):154−157. doi: 10.13347/j.cnki.mkaq.2014.10.047
    [33]
    王斌国. 面向矿山瓦斯预警应用的多元多尺度数据融合方法研究[D]. 青岛: 山东科技大学, 2019.

    WANG Binguo. Research on multi scale data fusion method for mine gas early warning application[D]. Qingdao: Shandong University of science and technology, 2019
    [34]
    屈世甲,武福生. 基于边缘计算的采煤工作面甲烷监测模式研究[J]. 煤炭科学技术,2020,48(12):161−167. doi: 10.13199/j.cnki.cst.2020.12.020

    QU Shijia,WU Fusheng. Discussion on methane monitoring mode of coal face based on edge computing[J]. Coal Science and Technology,2020,48(12):161−167. doi: 10.13199/j.cnki.cst.2020.12.020
    [35]
    陈晓晶,何 敏. 智慧矿山建设架构体系及其关键技术[J]. 煤炭科学技术,2018,46(2):208−212,236. doi: 10.13199/j.cnki.cst.2018.02.030

    CHEN Xiaojing,HE Min. Framework system and key technology of intelligent mine construction[J]. Coal Science and Technology,2018,46(2):208−212,236. doi: 10.13199/j.cnki.cst.2018.02.030
    [36]
    程文波,王华军. 矿井无线传感器网络建构方法研究[J]. 金属矿山,2012(3):107−109. doi: 10.3969/j.issn.1001-1250.2012.03.028

    CHENG Wenbo,WANG Huajun. Research of wireless sensor network construction method for mine[J]. Metal Mine,2012(3):107−109. doi: 10.3969/j.issn.1001-1250.2012.03.028
    [37]
    程 琦. 基于物联网的安全预警系统研究[D]. 西安: 长安大学, 2019.

    CHENG Qi. Research on security early warning system based on Internet of things[D]. Xi’an: Chang’an University, 2019
    [38]
    周雁斌. 智能矿山大数据关键技术与发展研究[J]. 世界有色金属,2020(11):13−14. doi: 10.3969/j.issn.1002-5065.2020.11.007

    ZHOU Yanbin. Research on key technology and development of big data in intelligent mine[J]. World Nonferrous Metals,2020(11):13−14. doi: 10.3969/j.issn.1002-5065.2020.11.007
    [39]
    何 敏. 智能煤矿数据治理框架与发展路径[J]. 工矿自动化,2020,46(11):23−27. doi: 10.13272/j.issn.1671-251x.17628

    HE Min. Intelligent coal mine data governance framework and development path[J]. Industry and Mine Automation,2020,46(11):23−27. doi: 10.13272/j.issn.1671-251x.17628
    [40]
    马小平,杨雪苗,胡延军. 人工智能技术在矿山智能化建设中的应用初探[J]. 工矿自动化,2020,46(5):8−14. doi: 10.13272/j.issn.1671-251x.17593

    MA Xiaoping,YANG Xuemiao,HU Yanjun,et al. Application of artificial intelligence technology in mine intelligent construction[J]. Industry and Mine Automation,2020,46(5):8−14. doi: 10.13272/j.issn.1671-251x.17593
  • Related Articles

    [1]CHEN Peng, CHEN Xuexi, LIU Yongjie, YANG Tao. Gas pressure affected to coal resistivity law and mechanism[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (7).
    [2]Xu Jiang Tang Xupei Zhang Chaolin Peng Shoujian Feng Dan Liu Longrong, . Experiment study on physical simulation of gas drainage effect under the condition of different gas pressure[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (5).
    [3]Wang Kaiwang. New borehole sealing technology of gas pressure measuring borehole based on PD sealing material[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (5).
    [4]Guo Keju Gao Kun, . Gas pressure growth curve method applied to measurement of seam gas pressure[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (11).
    [5]Wang Chaojie Jiang Chenglin Yang Dingding Yang Kai, . Analysis on borehole parameters affected to gas pressure measuring time[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (7).
    [6]Xu Youlin Zhang Hui Zheng Wei Wang Weizhong, . Experiment on permeability features of gassy coal under pressure relief condition[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (7).
    [7]Correction on Pressure Measured Results of Watery Seam Gas Based on Pressure Recovered Curve[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (7).
    [8]Study on Gas Pressure Measuring Technology with Downward Borehole Drilling Through Aquifer[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (3).
    [9]The Critical Gas Pressure of Coal and Gas Outburst with Different Coal Structure Combination[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (11).
    [10]Gas Pressure Measuring Technology with Borehole Through Seams in Close Distance Seam Group[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (2).
  • Cited by

    Periodical cited type(25)

    1. 李鑫,刘志勇,杨桢,李昊,周婧,卜婧然,王艺儒,颛孙忠明. 复合煤岩受载变形破裂微震电压演化规律. 煤炭学报. 2025(02): 930-943 .
    2. 齐消寒 ,王品 ,侯双荣 ,刘阳 ,朱同光 . 不同功率微波预处理煤样增透效果及能量变化研究. 矿业科学学报. 2024(01): 66-76 .
    3. 季飞. 松软煤层水力割缝缝槽形态控制技术研究及应用. 能源与环保. 2024(02): 29-33+39 .
    4. 季飞. 临空巷道煤柱割缝爆破切顶联合卸压技术研究. 煤炭工程. 2024(03): 66-74 .
    5. 刘永三. 超高压水射流割压联合技术试验分析. 陕西煤炭. 2024(07): 20-23+37 .
    6. 王方田,李哲,张村,何东升,张洋. 高瓦斯煤层大直径钻孔卸压增透瓦斯渗流时空演化机理. 煤炭科学技术. 2024(S1): 47-61 . 本站查看
    7. 胡善超,韩金明,程亚飞,亓佳利,黄俊鸿,高志豪,郭世豪,杨磊. 多孔套筒定向压裂力学机制及影响因素分析. 煤炭学报. 2024(08): 3366-3380 .
    8. 李鑫,刘志勇,杨桢,李昊,周婧,卜婧然,王艺儒. 基于CEEMD-IDWT的受载煤岩微震电压去噪算法. 电子测量与仪器学报. 2024(08): 124-136 .
    9. 王想刚,张世范,许继宗,张吉福,陈国红,陈玉东,马占海. 高应力特厚突出煤层水力割缝卸压防突技术研究. 中国煤炭. 2024(10): 48-56 .
    10. 刘海军,孙庆灿,吕超. 关于煤矿瓦斯灾害防治技术及其应用. 内蒙古煤炭经济. 2024(23): 139-141 .
    11. 王磊. 潞安矿区王庄煤矿9106水力割缝技术应用. 煤. 2023(01): 48-50+104 .
    12. 何伟,曹文龙,王向阳,康甲甲. 深部开采煤层水力割缝卸压增透与促抽瓦斯技术研究. 陕西煤炭. 2023(01): 41-47 .
    13. 徐东方,尉瑞,周风媛,张孝强. 低瓦斯高强度开采综放工作面静态爆破强化瓦斯抽采技术研究. 工业安全与环保. 2023(03): 69-72 .
    14. 李树刚,王瑞哲,林海飞,杨二豪,赵泓超,秦雷,郝荷杰. 超声波功率对煤体损伤特性及能量演化规律的试验研究. 煤炭科学技术. 2023(01): 283-294 . 本站查看
    15. 崔孟豪,姬会福,惠延波,张中伟,崔玉明,宋丹. 硬岩隧道掘进多臂协同钻孔技术研究. 煤炭科学技术. 2023(09): 261-273 . 本站查看
    16. 汪家畅,康健婷,康天合,郑亚炜,晏嘉欣,张慧慧,梁晓敏. 高低温循环冲击作用下砂岩孔裂隙结构的演化特征. 煤炭科学技术. 2023(11): 139-147 . 本站查看
    17. 阎俞佐,康健婷,郑亚炜,晏嘉欣,张连昆. 温度冲击作用对无烟煤甲烷吸附-解吸特性影响的试验研究. 煤炭科学技术. 2022(09): 93-103 . 本站查看
    18. 卢义玉,黄杉,葛兆龙,周哲,刘文川,管娅蕊. 我国煤矿水射流卸压增透技术进展与战略思考. 煤炭学报. 2022(09): 3189-3211 .
    19. 李潞渊,张兴华,康建华. 超高压后混合磨料水射流喷嘴优化数值模拟研究. 矿业安全与环保. 2022(05): 109-113+118 .
    20. 赵乾,陆占金,郝英豪,丁国利. 葫芦素煤矿临空宽煤柱超高压水力割缝试验研究. 内蒙古煤炭经济. 2022(17): 1-3 .
    21. 李川,吕英华,梁文勖. 超高压水力割缝卸压增透最优参数研究. 煤炭工程. 2022(S1): 111-115 .
    22. 唐永志,李平,朱贵旺,陈建,陈德忠,丰安祥,唐志华,杨洋,叶敏. 超高压水力割缝技术在中等硬度低透气性煤层的应用. 煤炭科学技术. 2022(12): 43-49 . 本站查看
    23. 孔祥喜,唐永志,李平,王传兵,陈建,李琰庆,袁本庆,陈本良,叶敏. 淮南矿区松软低透煤层煤层气开发利用技术与思考. 煤炭科学技术. 2022(12): 26-35 . 本站查看
    24. 王中华,曹建军. 深部远距离煤层群卸压主控因素及首采层优选方法研究. 煤炭科学技术. 2021(08): 154-161 . 本站查看
    25. 李冰,陈锋,姜沛汶,任建刚,刘见宝,宋志敏. 冲击荷载作用下不同煤阶煤的结构演化特征研究. 煤炭科学技术. 2021(10): 217-227 . 本站查看

    Other cited types(7)

Catalog

    Article views (209) PDF downloads (224) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return