Advance Search
ZHANG Yangyang,HUANG Wei. Comparative analysis of static and dynamic split tensile properties of red sandstone after freeze-thaw cycles[J]. Coal Science and Technology,2023,51(3):94−99. DOI: 10.13199/j.cnki.cst.2021-0443
Citation: ZHANG Yangyang,HUANG Wei. Comparative analysis of static and dynamic split tensile properties of red sandstone after freeze-thaw cycles[J]. Coal Science and Technology,2023,51(3):94−99. DOI: 10.13199/j.cnki.cst.2021-0443

Comparative analysis of static and dynamic split tensile properties of red sandstone after freeze-thaw cycles

Funds: 

Scientific Research Key Project of Anhui Provincial Department of Education (2022AH052930, KJ2020A0899)

More Information
  • Received Date: June 02, 2021
  • Available Online: April 26, 2023
  • It's of great value to study on splitting tensile properties of rock after freeze-thaw cycles of rock mass in cold regions. The typical red sandstone in cold region was selected for testing, the freeze-thaw (F-T) cycle experiments with different numbers (0, 5, 10, 15, and 20 times) were performed on red sandstone specimens, and the effects of F-T cycle number on the P-wave velocity, dry density, and porosity of red sandstone were studied in detail. In addition, both the static and dynamic mechanical properties of red sandstone specimens after different F-T cycles were tested by using rock testing machine and ø50 mm split Hopkinson bar system, and the influence of F-T cycle number on the static and dynamic strength, deformation, and failure mode of red sandstone was systematically analyzed. F-T damage degree of red sandstone was defined based on the variation in P-wave velocity. Results show that with the increase of F-T number, the internal cracks of red sandstone continuously expand, bonding between mineral particles gradually decreases. Both the P-wave velocity and dry density of specimens gradually decrease, while the porosity and damage degree gradually increase. The static and dynamic splitting tensile strengths of red sandstone specimens gradually decrease with the increase of F-T number, while the time needed to reach the peak stress gradually increases. After 20 F-T cycles, the static and dynamic splitting strengths of red sandstone specimens decreased by 41.88% and 21.93%, respectively. Under the same F-T cycle number, the dynamic splitting strength of red sandstone specimens is increased by 2~3.5 times compared to the specimen under static loading. Under the static splitting condition, the red sandstone specimen exhibits the central splitting failure mode. However, an obvious crushed region at both ends of specimens was observed under dynamic loading. Additionally, with the increase of F-T number, the crushed area increases gradually, while the size of fragments gradually decreases. The damage degree of red sandstone increases logarithmically with the increase of F-T number.

  • [1]
    HAO Y,HAO H,ZHANG X H. Numerical analysis of concrete material properties at high strain rate under direct tension[J]. International Journal of Impact Engineering,2012,39(2):51−62.
    [2]
    蔡美峰. 岩石力学与工程第2版[M]. 北京: 科学出版社, 2019.

    CAI Meifeng. Rock mechanics and engineering [M]. Beijing: Science Press, 2019.
    [3]
    宫凤强,李夕兵. 巴西圆盘劈裂试验中拉伸模量的解析算法[J]. 岩石力学与工程学报,2010,29(5):881−891.

    GONG Fengqiang,LI Xibing. Analytical algorithm to estimate tensile modulus in Brazilian disk splitting tests[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):881−891.
    [4]
    钟 帅,左双英,罗 沙,等. 含层理灰岩的巴西劈裂强度及拉裂损伤各向异性[J]. 科学技术与工程,2020,20(16):6578−6584. doi: 10.3969/j.issn.1671-1815.2020.16.042

    ZHONG Shuai,ZUO Zhuangying,LUO Sha,et al. Brazilian tensile strength and tensile damage anisotropy of laminated limestone[J]. Science Technology and Engineering,2020,20(16):6578−6584. doi: 10.3969/j.issn.1671-1815.2020.16.042
    [5]
    平 琦, 马芹永, 张经双, 等. 高应变率下砂岩动态拉伸性能SHPB试验与分析[J]. 岩石力学与工程学报, 2012, 31(S1): 3363−3369.

    PING Qi, MA Qinyong, ZHANG Jingshuang, et al. SHPB tests and analysis of dynamic tensile performance of sandstone under high strain rate [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3363−3369.
    [6]
    平 琦, 马芹永, 袁 璞, 等. 岩石试件SHPB劈裂拉伸试验中能量耗散分析[J]. 采矿与安全工程学报, 2013, 30(3): 401–407.

    PING Qi, MA Qinyong, YUAN Pu, et al. Energy dissipation analysis of stone specimens in SHPB tensile test [J]. Journal of Mining and Safety Engineering, 2013, 30(3): 401–407.
    [7]
    许金余, 刘 石, 孙蕙香. 3种岩石的平台巴西圆盘动态劈裂拉伸试验分析[J]. 岩石力学与工程学报, 2014, 33(S1): 2814–2819.

    XU Jinyu, LIU Shi, SUN Huixiang. Analysis of dynamic split tensile tests of flattened Brazilian disc of three rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2814–2819.
    [8]
    XU X T,WANG Y B,YIN Z H,et al. Effect of temperature and strain rate on mechanical characteristics and constitutive of frozen Helin loss[J]. Cold Regions Science and Technology,2017,136:44−51. doi: 10.1016/j.coldregions.2017.01.010
    [9]
    刘德俊,浦 海,沙子恒,等. 冻融循环条件下砂岩动态拉伸力学特性试验研究[J]. 煤炭科学技术,2022,50(8):60−67.

    LIU Dejun,PU Hai,SHA Ziheng,et al. Experimental study on dynamic tensile mechanical properties of sandstone under freeze-thaw cycles[J]. Coal Science and Technology,2022,50(8):60−67.
    [10]
    陈招军,王乐华,王思敏,等. 冻融循环条件下岩石加卸荷力学特性研究[J]. 长江科学院院报,2017,34(1):98−103. doi: 10.11988/ckyyb.20150807

    CHEN Zhaojun,WANG Lehua,WANG Simin,et al. Loading and unloading mechanical characteristics of rock under freezing-thawing cycels[J]. Journal of Yangtze River Scientific Research Institute,2017,34(1):98−103. doi: 10.11988/ckyyb.20150807
    [11]
    刘 慧, 蔺江昊, 杨更社, 等. 冻融循环作用下砂岩受拉损伤特性的声发射试验[J]. 采矿与安全工程学报, 2021, 38 (4): 830−839.

    LIU Hui, LIN Jianghao, YANG Gengshe, et al. Acoustic emission test on tensile damage characteristics of sandstone under freeze-thaw cycle[J]. Journal of Mining and Safety Engineering, 2021, 38 (4): 830−839.
    [12]
    宋彦琦,刘济琛,邵志鑫,等. 冻融循环条件下灰岩物理力学性能试验[J]. 科学技术与工程,2020,20(2):741−746. doi: 10.3969/j.issn.1671-1815.2020.02.046

    SONG Yanqi,LIU Jichen,SHAO Zhixin,et al. Experimental study on physical and mechanical properties of limestone under freeze-thaw cycles[J]. Science Technology and Engineering,2020,20(2):741−746. doi: 10.3969/j.issn.1671-1815.2020.02.046
    [13]
    单仁亮,张 蕾,杨 昊,等. 饱水红砂岩冻融特性试验研究[J]. 中国矿业大学学报,2016,45(5):923−929. doi: 10.13247/j.cnki.jcumt.000566

    SHAN Renliang,ZHANG Lei,YANG Hao,et al. Experimental study of freeze-thaw properties of saturated red stone[J]. Journal of China University of Mining and Technology,2016,45(5):923−929. doi: 10.13247/j.cnki.jcumt.000566
    [14]
    张慧梅, 夏浩峻, 杨更社, 等. 冻融循环和围压对岩石物理力学性质影响的试验研究[J]. 煤炭学报, 2018, 43(2): 441–448.

    ZHANG Huimei, XIA Haojun, YANG Gengshe, et al. Experimental research of influences of freeze-thaw cycles and confining pressure on physical-mechanical characteristics of rocks [J]. Journal of China Coal Society, 2018, 43(2): 441–448.
    [15]
    WANG P,XU H Y. A prediction model for the dynamic mechanical degradation of sed imentary rock after along-term freeze-thaw weathering: considering the strain-rate effect[J]. Cold Regions Science and Technology,2016,131:16−23. doi: 10.1016/j.coldregions.2016.08.003
    [16]
    MA Qinyong, MA Dongdong, YAO Zhaoming. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock specimen[J]. Cold Regions Science and Technology, 2018, 153: 10–17.
    [17]
    ULUSAY J Hudson. The complete ISRM suggested methods for rock characterization, testing and monitoring [J]. International Society for Rock Mechanics, 2007: 1974−2006.
    [18]
    闻 名,陈 震,许金余,等. 不同含水率红砂岩静动态劈拉试验及细观分析[J]. 地下空间与工程学报,2017,13(1):86−92.

    WEN Ming,CHEN Zhen,XU Jinyu,et al. Static-dynamic split tensile tests and micro analysis on red-sandstone with different moisture contents[J]. Chinese Journal of Underground Space and Engineering,2017,13(1):86−92.
    [19]
    杨仁树,李炜煜,李永亮,等. 3种岩石动态拉伸力学性能试验与对比分析[J]. 煤炭学报,2020,45(9):3107−3118. doi: 10.13225/j.cnki.jccs.2019.0853

    YANG Renshu,LI Weiyu,LI Yongliang,et al. Comparative analysis tensile mechanical properties of three kinds of rocks[J]. Journal of China Coal Society,2020,45(9):3107−3118. doi: 10.13225/j.cnki.jccs.2019.0853
    [20]
    平 琦. 砂岩动静态拉伸力学性能试验与对比分析[J]. 地下空间与工程学报,2013,9(2):246−290.

    PIN Qi. Comparative analyses on dynamic and tensile performances of sandstone[J]. Chinese Journal of Underground Space and Engineering,2013,9(2):246−290.
    [21]
    李家欣,袁 维,王 伟,等. 冻融循环条件下白云岩物理力学特性[J]. 科学技术与工程,2020,20(2):755−762. doi: 10.3969/j.issn.1671-1815.2020.02.048

    LI Jiaxin,YUAN Wei,WANG Wei,et al. Physical and Mechanical properties of Dolomite with freeze-thaw cycles[J]. Science Technology and Engineering,2020,20(2):755−762. doi: 10.3969/j.issn.1671-1815.2020.02.048
  • Cited by

    Periodical cited type(7)

    1. 薛旭升,覃一晗,杨星云,岳佳宁,郭逸风,毛清华,王川伟,张旭辉. 基于注意力机制与生成对抗网络的煤矿巷道数字建模优化方法. 中国矿业大学学报. 2025(02): 304-315 .
    2. 许敏,邵向阳. 伸缩式钻孔机器人动力学模型及仿真分析研究. 机械设计与制造. 2024(08): 333-338+345 .
    3. 张君. 基于WOA-FOPID算法的钻锚机器人机械臂运动控制研究. 煤炭科学技术. 2022(06): 292-302 . 本站查看
    4. 马宏伟,毛金根,毛清华,张旭辉,刘博兴. 基于惯导/全站仪组合的掘进机自主定位定向方法. 煤炭科学技术. 2022(08): 189-195 . 本站查看
    5. 马宏伟,晁勇,薛旭升,毛清华,王川伟. 基于双目视觉的掘锚机器人行驶位移检测方法. 工矿自动化. 2022(12): 16-25 .
    6. 王虹,王步康,张小峰,李发泉. 煤矿智能快掘关键技术与工程实践. 煤炭学报. 2021(07): 2068-2083 .
    7. 康红普,姜鹏飞,高富强,王子越,刘畅,杨建威. 掘进工作面围岩稳定性分析及快速成巷技术途径. 煤炭学报. 2021(07): 2023-2045 .

    Other cited types(4)

Catalog

    Article views (100) PDF downloads (32) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return