HU Shijie,WANG Fangtian,GAO Xiang,et al. Damage characteristics and mechanical properties of superhigh-water material consolidated body under triaxial stress[J]. Coal Science and Technology,2022,50(12):128−135
. DOI: 10.13199/j.cnki.cst.2021-0392Citation: |
HU Shijie,WANG Fangtian,GAO Xiang,et al. Damage characteristics and mechanical properties of superhigh-water material consolidated body under triaxial stress[J]. Coal Science and Technology,2022,50(12):128−135 . DOI: 10.13199/j.cnki.cst.2021-0392 |
In order to study the damage characteristics of superhigh-wate consolidated body under triaxial stress state, uniaxial experiments of superhigh-water consolidated body under different curing time (1, 7, 14, 21, 28 d) were carried out. Uniaxial compression models under different curing times were established by the parallel bonding model of PFC3D, and five groups of uniaxial strength of PFC3D simulation experiment were obtained, which were consistent with the uniaxial strength of the uniaxial experiment. Statistics each simulation experiment of uniaxial compression parallel bond, mesoscopic physical and mechanical parameters in the model on the basis of the parameters under different curing time, superhigh-water consolidation triaxial compression model body, the same confining pressure and axial stress is applied, record the triaxial experiments under different curing time in the process of stress-strain curve and the force when the damage distribution chain. Analyzed superhigh-water body of consolidation in the damage characteristics of three to the stress state, the results show that: ① the superhigh-water concretion body three to the stress state of the changing rule of the ultimate strength with curing time can be represented by the Bohr boltzmann equation. When curing time is 1 to 14 days, the ultimate strength increases fastest, and the maximum ultimate strength reaches 3.1 MPa when curing time is 28 days. ② The variation rule of the degree of penetration of force chains in the triaxial compression model of superhigh-water consolidated body with curing time is as follows: within curing time of 1-28 d, the number of transverse contact force chains is 4 006, 4 561, 4 891, 5 017, 5 062, respectively. The number of longitudinal contact force chains is 4 029, 4 439, 4 716, 4 917 and 5 123. The results show that the carrying capacity of the superhigh-water consolidated body increases with the increase of curing time, and increases fastest during the curing time from 0 to 14 days, and tends to be stable during 14 to 28 days. ③ The tensile chain was used to simulate the fracture development in the triaxial compression model of superhigh-water consolidated body. The results show that the cracks concentrate on the upper and lower ends of the specimen when the curing time is 1 d. With the increase of curing time, the cracks in the middle of the specimen begin to increase and finally connect with the cracks at the upper and lower ends of the specimen.
[1] |
丁 玉,冯光明,王成真. 超高水充填材料基本性能试验研究[J]. 煤炭学报,2011,36(7):1087−1092. doi: 10.13225/j.cnki.jccs.2011.07.027
DING Yu,FENG Guangming,WANG Chengzhen. Experimental research on basic properties of superhigh-water packing material[J]. Journal of China Coal Society,2011,36(7):1087−1092. doi: 10.13225/j.cnki.jccs.2011.07.027
|
[2] |
孙春东,刘树轮,李继升. 超高水材料在煤矿的系列应用技术[J]. 煤炭科学技术,2017,45(8):42−47. doi: 10.13199/j.cnki.cst.2017.08.008
SUN Chundong,LIU Shulun,LI Jisheng. Application technology of ultra high-water material in coal mine[J]. Coal Science and Technology,2017,45(8):42−47. doi: 10.13199/j.cnki.cst.2017.08.008
|
[3] |
冯光明,丁 玉,朱红菊,等. 矿用超高水充填材料及其结构的试验研究[J]. 中国矿业大学学报,2010,39(6):813−819.
FENG Guangming,DING Yu,ZHU Hongju,et al. Experimental research on a superhigh-water packing material for mining and its micromorphology[J]. Journal of China University of Mining & Technology,2010,39(6):813−819.
|
[4] |
郭文兵,马志宝,白二虎. 我国煤矿“三下一上”采煤技术现状与展望[J]. 煤炭科学技术,2020,48(9):16−26. doi: 10.13199/j.cnki.cst.2020.09.002
GUO Wenbing,MA Zhibao,BAI Erhu. Current status and prospect of coal mining technology under building, waterbodies and railways, and above confined water in China[J]. Coal Science and Technology,2020,48(9):16−26. doi: 10.13199/j.cnki.cst.2020.09.002
|
[5] |
王方田,李 岗,班建光,等. 深部开采充填体与煤柱协同承载效应研究[J]. 采矿与安全工程学报,2020,37(2):311−318.
WANG Fangtian,LI Gang,BAN Jianguang,et al. Synergistic bearing effect of backfilling body and coal pillar in deep mining[J]. Journal of Mining & Safety Engineering,2020,37(2):311−318.
|
[6] |
杜兆文,陈绍杰,尹大伟,等. 氯盐侵蚀环境下膏体充填体稳定性试验研究[J]. 中国矿业大学学报,2021,50(3):532−538,547.
DU Zhaowen,CHEN Shaojie,YIN Dawei,et al. Experimental study of the stability of paste backfill under chlorine erosion environment[J]. Journal of China University of Mining & Technology,2021,50(3):532−538,547.
|
[7] |
任 帅,王方田,李少涛,等. 深井超高水充填工作面小煤柱稳定性规律及控制技术[J]. 煤矿安全,2021,52(6):243−249,254.
REN Shuai,WANG Fangtian,LI Shaotao,et al. Stability law and control technology of small coal pillar in super high water backfilling face withdeep mining depth[J]. Safety in Coal Mines,2021,52(6):243−249,254.
|
[8] |
李召峰,张 晨,张 健,等. 不同水饱和度充填体力学性能及损伤机制研究[J]. 采矿与安全工程学报,2021,38(5):1063−1069, 107.
LI Zhaofeng,ZHANG Chen,ZHANG Jian,et al. Study on mechanical properties and damage mechanism of backfill with different water saturation[J]. Journal of Mining & Safety Engineering,2021,38(5):1063−1069, 107.
|
[9] |
王旭锋,孙春东,张东升,等. 超高水材料充填胶结体工程特性试验研究[J]. 采矿与安全工程学报,2014,31(6):852−856. doi: 10.13545/j.issn1673-3363.2014.06.004
WANG Xufeng,SUN Chundong,ZHANG Dongsheng,et al. Experimental study on engineering characteristics of super-high water filling body[J]. Journal of Mining & Safety Engineering,2014,31(6):852−856. doi: 10.13545/j.issn1673-3363.2014.06.004
|
[10] |
贾凯军,冯光明,王誉钦,等. 俯斜开采超高水材料袋式充填体失稳机理及防治[J]. 中国矿业大学学报,2015,44(3):409−415. doi: 10.13247/j.cnki.jcumt.000323
JIA Kaijun,FENG Guangming,WANG Yuqin,et al. Instability mechanism and prevention of bag filling body constructed by super-high-water material under the condition of down-dip mining[J]. Journal of China University of Mining & Technology,2015,44(3):409−415. doi: 10.13247/j.cnki.jcumt.000323
|
[11] |
赵家巍,苏 腾,荣腾龙,等. 超高水充填材料侧限压缩应力应变本构关系研究[J]. 采矿与安全工程学报,2020,37(2):394−400. doi: 10.13545/j.cnki.jmse.2020.02.020
ZHAO Jiawei,SU Teng,RONG Tenglong,et al. A constitutive model of superhigh-water filling material under confined compression[J]. Journal of Mining & Safety Engineering,2020,37(2):394−400. doi: 10.13545/j.cnki.jmse.2020.02.020
|
[12] |
苏承东,张振华. 大理岩三轴压缩的塑性变形与能量特征分析[J]. 岩石力学与工程学报,2008,27(2):273−280. doi: 10.3321/j.issn:1000-6915.2008.02.007
SU Chengdong,ZHANG Zhenhua. Analysis of plastic deformation and energy property of marble under pseudo-triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(2):273−280. doi: 10.3321/j.issn:1000-6915.2008.02.007
|
[13] |
刁兆丰,刘长武,张连卫,等. 掺污泥改性高水材料典型加载方式下的变形特征和力学响应[J]. 科学技术与工程,2018,18(10):262−266. doi: 10.3969/j.issn.1671-1815.2018.10.045
DIAO Zhaofeng,LIU Changwu,ZHANG Lianwei,et al. Deformation characteristics and mechanical response of modified high water material mixed with sludge under typical loading methods[J]. Science Technology and Engineering,2018,18(10):262−266. doi: 10.3969/j.issn.1671-1815.2018.10.045
|
[14] |
冯 波,刘长武,谢 辉,等. 改性高水材料尺寸与形状效应研究[J]. 工程科学与技术,2017,49(S2):121−127.
FENG Bo,LIU Changwu,XIE Hui,et al. Experimental study on the size and the shape of high-water-content material that modified[J]. Advanced Engineering Sciences,2017,49(S2):121−127.
|
[15] |
张 钊,刘长武,王一冰,等. 改性高水材料抗压、抗剪强度特征及对比分析[J]. 工程科学学报,2021,43(4):552−560.
ZHANG Zhao,LIU Changwu,WANG Yibing,et al. Characteristic and comparative analysis of compressive and shear strengths of modified high-water materials[J]. Chinese Journal of Engineering,2021,43(4):552−560.
|
[16] |
冯 波,刘长武,谢 辉,等. 粉煤灰改性高水材料力学性能试验研究及机理分析[J]. 工程科学学报,2018,40(10):1187−1195.
FENG Bo,LIU Changwu,XIE Hui,et al. Experimental study and analysis of the mechanical properties of high-water-content materials modified with fly ash[J]. Chinese Journal of Engineering,2018,40(10):1187−1195.
|
[17] |
赵永辉,冉洪宇,冯国瑞,等. 单轴压缩下不同高宽比矸石胶结充填体损伤演化及破坏特征研究[J]. 采矿与安全工程学报,2022,39(4):674−682.
ZHAO Yonghui,RAN Hongyu,FENG Guorui,et al. Damage evolution and failure characteristics of cemented gangue backfill body with different height-width ratios under uniaxial compression[J]. Journal of Mining & Safety Engineering,2022,39(4):674−682.
|
[18] |
郭育霞,赵永辉,冯国瑞,等. 矸石胶结充填体单轴压缩损伤破坏尺寸效应研究[J]. 岩石力学与工程学报,2021,40(12):2434−2444. doi: 10.13722/j.cnki.jrme.2021.0527
GUO Yuxia,ZHAO Yonghui,FENG Guorui,et al. Study on damage size effect of cemented gangue backfill body under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2434−2444. doi: 10.13722/j.cnki.jrme.2021.0527
|
[19] |
侯永强,尹升华,杨世兴,等. 动态荷载下胶结充填体力学响应及能量损伤演化过程研究[J]. 岩土力学,2022,43(S1):145−156.
HOU Yongqiang,YIN Shenghua,YANG Shixing,et al. Mechanical response and energy damage evolution process of cemented backfill under impact loading[J]. Rock and Soil Mechanics,2022,43(S1):145−156.
|
[20] |
张学朋,王 刚,蒋宇静,等. 基于颗粒离散元模型的花岗岩压缩试验模拟研究[J]. 岩土力学,2014,35(S1):99−105. doi: 10.16285/j.rsm.2014.s1.009
ZHANG Xuepeng,WANG Gang,JIANG Yujing,et al. Simulation research on granite compression test based on particle discrete element model[J]. Rock and Soil Mechanics,2014,35(S1):99−105. doi: 10.16285/j.rsm.2014.s1.009
|
[21] |
石崇颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018.
|
[22] |
Itasca Consulting Group Inc. Manual of particle flow code in 2-dimension (Version 3.10)[M]. Minneapolis: Itasca Consulting Group Inc, 2004.
|
[23] |
冯光明,李乃梁,丁 玉. 煤矿超高水材料充填工艺系统与实践[J]. 矿业工程研究,2019,34(1):13−22.
FENG Guangming,LI Nailiang,DING Yu. Process system of filling with supper high-water materials and practice in coal mine[J]. Mineral Engineering Research,2019,34(1):13−22.
|
[24] |
胡炳南,刘鹏亮,崔 锋,等. 我国充填采煤技术回顾及发展现状[J]. 煤炭科学技术,2020,48(9):39−47. doi: 10.13199/j.cnki.cst.2020.09.004
HU Bingnan,LIU Pengliang,CUI Feng,et al. Review and development status of backfill coal mining technology in China[J]. Coal Science and Technology,2020,48(9):39−47. doi: 10.13199/j.cnki.cst.2020.09.004
|
[25] |
冯光明. 超高水充填材料及其充填开采技术研究与应用[D]. 徐州: 中国矿业大学, 2009.
FENG Gangming. Research on the superhigh-water packing material and filling mining technology and their application[D]. Xuzhou: China University of Mining and Technology, 2009.
|
[26] |
李 博. 超高水材料开放式充填固结体承载特性试验研究[D]. 徐州: 中国矿业大学, 2016.
LI Bo. Experimental study on bearing capacity of open filling consolidation of super high water materials[D]. Xuzhou: China University of Mining and Technology, 2016.
|
[27] |
罗怀廷,李俊孟,黄艳利,等. 露天矿排放矸石三轴压缩宏-细观力学特性研究[J]. 采矿与安全工程学报,2018,35(1):170−178. doi: 10.13545/j.cnki.jmse.2018.01.024
LUO Huaiting,LI Junmeng,HUANG Yanli,et al. Study on macro and microcosmic mechanical properties of crushed gangue from pit mine under triaxial compression[J]. Journal of Mining & Safety Engineering,2018,35(1):170−178. doi: 10.13545/j.cnki.jmse.2018.01.024
|