Citation: | ZHAO Fangyu,DENG Ze,WANG Haichao,et al. Influence of coal structure and macrolithotype of coal on coal adsorption and desorption of gas[J]. Coal Science and Technology,2022,50(12):170−184. DOI: 10.13199/j.cnki.cst.2021-0365 |
In order to study the influence of coal body structure and macrolithotype of coal in high rank coal on coal body adsorption and desorption, The data of coal petrography, coal quality, isothermal adsorption and desorption of 79 coal rock samples from 55 coal-bed methane wells in No.3 Coal Seam in the south of Qinshui Basin were collected, and the change laws in the Langmuir volume (VL), Langmuir pressure (PL), desorption rate of coal samples with the same macrolithotype of coal, different coal body structures and the same coal body structure, different macrolithotype of coal of coal samples, were discussed in the influential mechanisms of coal body structure and macrolithotype of coal on coal body adsorption and desorption. The results show that the average VL of coal samples in the study area is 37.00 m3/t, of which 86.61% is distributed in 33.00—41.00 m3/t, and the average PL is 2.82 MPa, of which 82.28% is distributed in 2.30~3.30 MPa. The adsorption and desorption capacities of fractured coal are better than those of primary structure coal and the difference of pore connectivity caused by structural destruction is the fundamental reason for the difference of desorption and adsorption characteristics between primary structural coal and fractured coal; The development degree of pores and fissures of primary structure coal is different from that of fractured coal. The methane emission effect of fractured coal is better than that of primary structure coal because of more developed pores. The decreasing rule of surface free energy of coal for methane adsorption is the mylonitic coal > granulitic coal > fractured coal > primary structure coal, which reflects the difference of methane adsorption capacity of coal with different coal structure; the adsorption and desorption capabilities of the three types of macro coals are bright coal > semibright coal > semidull coal. On the one hand, the specific surface area of coal decreases roughly in the order of bright coal, semibright coal, and semidull coal, which reflects the difference in adsorption sites on the surface of the coal matrix. On the other hand, it is caused by the difference of vitrinite and inertinite content between vitrain and durain. The purpose of this study is to further reveal the occurrence and production mechanism of CBM in high-rank coal reservoirs, and to provide a basis for the optimization of CBM favorable areas and target horizons.
[1] |
GUAN Cheng,LIU Shimin,LI Chengwu,et al. The temperature effect on the methane and CO2 adsorption capacities of Illinois coal[J]. Fuel,2018,211:241−250. doi: 10.1016/j.fuel.2017.09.046
|
[2] |
CHENG Yuanping,JIANG Haina,ZHANG Xiaolei,et al. Effects of coal rank on physicochemical properties of coal and on methane adsorption[J]. International Journal of Coal Science & Technology,2017,4(2):129−146.
|
[3] |
KROOSS B M,VAN BERGEN F,GENSTERBLUM Y,et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International journal of coal geology,2002,51(2):69−92. doi: 10.1016/S0166-5162(02)00078-2
|
[4] |
NI Guanhua,LIN Baiquan,ZHAI C. Influence of water incursion on the pore characteristics of coal from Eastern China at different temperatures[J]. Disaster Advances,2013,6(11):43−54.
|
[5] |
WEN Zhihui,WEI Jianping,WANG Dengke,et al. Experimental study of gas desorption law of deformed coal[J]. Procedia Engineering,2011,26:1083−1088. doi: 10.1016/j.proeng.2011.11.2277
|
[6] |
LAXMINARAYANA C,CROSDALE P J. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals[J]. International Journal of Coal Geology,1999,40(4):309−325. doi: 10.1016/S0166-5162(99)00005-1
|
[7] |
LAXMINARAYANA C,CROSDALE P J. Controls on methane sorption capacity of Indian coals[J]. AAPG bulletin,2002,86(2):201−212.
|
[8] |
王可新, 傅雪海, 权 彪, 等. 中国各煤级煤的吸附/解吸特征研究[C]// 中国煤炭学会煤层气专业委员会. 2008年煤层气学术研讨会论文集, 江西: 地质出版社, 2008: 31-42.
WANG Kexin, FU Xuehai, QUAN Biao, et al. Study on the adsorption/desorption characteristics of various rank coals in China[C]. Coalbed Methane Specialized Committee, China Coal Society. Proceedings of 2008 coalbed methane Symposium, Jiangxi: Geological Publishing House, 2008: 31-42.
|
[9] |
ZHANG Junfang,CLENNELL M B,DEWHURST D N,et al. Combined monte carlo and molecular dynamics simulation of methane adsorption on dry and moist coal[J]. Fuel,2014,122:186−197. doi: 10.1016/j.fuel.2014.01.006
|
[10] |
ZHANG Kaizhong,CHENG Yuanping,WANG Liang,et al. Pore morphology characterization and its effect on methane desorption in water-containing coal: an exploratory study on the mechanism of gas migration in water-injected coal seam[J]. Journal of Natural Gas Science and Engineering,2020:75.
|
[11] |
WANG Zhaofeng,SU Weiwei,TANG Xu,et al. Influence of water invasion on methane adsorption behavior in coal[J]. International Journal of Coal Geology,2018,197:74−83. doi: 10.1016/j.coal.2018.08.004
|
[12] |
DAY S,SAKUROVS R,WEIR S. Supercritical gas sorption on moist coals[J]. International Journal of Coal Geology,2008,74(3-4):203−214. doi: 10.1016/j.coal.2008.01.003
|
[13] |
GUO Haijun,CHENG Yuanping,WANG Liang,et al. Experimental study on the effect of moisture on low-rank coal adsorption characteristics[J]. Journal of Natural Gas Science and Engineering,2015,24:245−251. doi: 10.1016/j.jngse.2015.03.037
|
[14] |
SANG Shuxun,ZHU Yanming,ZHANG Jing,et al. Influence of liquid water on coalbed methane adsorption: An experimental research on coal reservoirs in the south of Qinshui Basin[J]. Chinese Science Bulletin,2005,50(DecS):79−85.
|
[15] |
CHEN Xiangjun,CHENG Yuanping. Influence of the injected water on gas outburst disasters in coal mine[J]. Natural Hazards,2015,76(2):1093−1109. doi: 10.1007/s11069-014-1535-3
|
[16] |
WU Jiahao,YU Jingcun,WANG Zhaofeng,et al. Experimental investigation on spontaneous imbibition of water in coal: Implications for methane desorption and diffusion[J]. Fuel,2018,231:427−437. doi: 10.1016/j.fuel.2018.05.105
|
[17] |
PENG Cheng,ZOU Changchun,YANG Yuqing,et al. Fractal analysis of high rank coal from southeast Qinshui Basin by using gas adsorption and mercury porosimetry[J]. Journal of Petroleum Science and Engineering,2017,156:235−249. doi: 10.1016/j.petrol.2017.06.001
|
[18] |
FENG Zengchao,ZHOU Dong,ZHAO Yangsheng,et al. Study on microstructural changes of coal after methane adsorption[J]. Journal of Natural Gas Science and Engineering,2016,30:28−37. doi: 10.1016/j.jngse.2016.01.044
|
[19] |
GAO Tao,ZHAO Dong,WANG Chen,et al. Energy variation in coal samples with different particle sizes in the process of adsorption and desorption[J]. Journal of Petroleum Science and Engineering,2020,188:106932. doi: 10.1016/j.petrol.2020.106932
|
[20] |
KIM D,LEE J,LEE Y. The CH4-CO2 adsorption characteristics of sub-bituminous coal with different particle sizes[J]. Journal of the Korean Society of Mineral and Energy Resources Engineers,2018,55(1):37−48. doi: 10.12972/ksmer.2018.55.1.037
|
[21] |
ZHANG Lei,AZIZ N,REN Ting,et al. Influence of coal particle size on coal adsorption and desorption characteristics[J]. Archives of Mining Sciences,2014,59(3):807−820. doi: 10.2478/amsc-2014-0056
|
[22] |
ZHAO Junlong,XU Hao,TANG Dazhen,et al. Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China[J]. International Journal of Coal Geology,2016,159:18−29. doi: 10.1016/j.coal.2016.03.019
|
[23] |
SOARES J L,OBERZINER A,JOSE H J,et al. Carbon dioxide adsorption in Brazilian coals[J]. Energy & Fuels,2007,21(1):209−215.
|
[24] |
LUTYNSKI M,M González González. Characteristics of carbon dioxide sorption in coal and gas shale-The effect of particle size[J]. Journal of Natural Gas Science & Engineering,2016,28:558−565.
|
[25] |
TAO Shu,PAN Zhejun,CHEN Shida,et al. Coal seam porosity and fracture heterogeneity of marcolithotypes in the Fanzhuang Block, southern Qinshui Basin, China - ScienceDirect[J]. Journal of Natural Gas Science and Engineering,2019,66:148−158. doi: 10.1016/j.jngse.2019.03.030
|
[26] |
CHALMERS G,BUSTIN R M. On the effects of petrographic composition on coalbed methane sorption[J]. International Journal of Coal Geology,2007,69(4):288−304. doi: 10.1016/j.coal.2006.06.002
|
[27] |
HUANG Liangliang,ZHANG Luzheng,SHAO Qing,et al. Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects[J]. Journal of Physical Chemistry C,2007,111(32):11912−11920. doi: 10.1021/jp067226u
|
[28] |
PINI R,OTTIGER S,BURLINI L,et al. Sorption of carbon dioxide, methane and nitrogen in dry coals at high pressure and moderate temperature[J]. International Journal of Greenhouse Gas Control,2010,4(1):90−101. doi: 10.1016/j.ijggc.2009.10.019
|
[29] |
YANG Tao,CHEN Peng,LI Bo,et al. Potential safety evaluation method based on temperature variation during gas adsorption and desorption on coal surface[J]. Safety Science,2019,113:336−344. doi: 10.1016/j.ssci.2018.11.027
|
[30] |
HE Manchao,WANG Chunguang,LI Dejian,et al. Desorption characteristics of adsorbed gas in coal samples under coupling temperature and uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):865−872.
|
[31] |
张小东,杜志刚,李朋朋. 不同煤体结构的高阶煤储层物性特征及煤层气产出机理[J]. 中国科学(地球科学),2017,47(1):72−81.
ZHANG Xiaodong,DU Zhigang,LI Pengpeng. Physical characteristics of high-rank coal reservoirs in different coal-body structures and the mechanism of coalbed methane production[J]. Scientia Sinica(Terrae),2017,47(1):72−81.
|
[32] |
WANG Kai,ZANG Jie,FENG Yufeng,et al. Effects of moisture on diffusion kinetics in Chinese coals during methane desorption[J]. Journal of Natural Gas Science and Engineering,2014,21:1005−1014. doi: 10.1016/j.jngse.2014.10.032
|
[33] |
LIU Huihu,FARID I I,SANG Shuxun,et al. Synthetical study on the difference and reason for the pore structure of the No. 3 coal reservoir from the southern Qinshui Basin, China, using mercury intrusion porosimetry, low-temperature N2 adsorption, low field nuclear magnetic resonance, and nuclear magnetic resonance cryoporometry[J]. Energy Reports,2020,6:1876−1887. doi: 10.1016/j.egyr.2020.07.011
|
[34] |
MAHAJAN O P,WALKER P L. Water adsorption on coals[J]. Fuel,1971,50(3):308−317. doi: 10.1016/0016-2361(71)90019-6
|
[35] |
柳先锋,宋大钊,何学秋,等. 微结构对软硬煤瓦斯吸附特性的影响[J]. 中国矿业大学学报,2018,47(1):155−161.
LIU Xianfeng,SONG Dazhao,HE Xueqiu,et al. Effect of microstructures on methane adsorption characteristics of soft and hard coal[J]. Journal of China University of Mining & Technology,2018,47(1):155−161.
|
[36] |
李 波. 不同变质程度的软硬煤瓦斯解吸规律研究[J]. 煤,2019,28(1):32−34. doi: 10.3969/j.issn.1005-2798.2019.01.011
LI Bo. Study on gas desorption law of soft and hard coal with different degrees of metamorphism[J]. Coal,2019,28(1):32−34. doi: 10.3969/j.issn.1005-2798.2019.01.011
|
[37] |
田 敬,林晓英,苏现波,等. 软硬煤孔隙结构特征及对变压解吸规律的影响[J]. 煤矿安全,2018,49(12):21−26.
TIAN Jing,LIN Xiaoying,SU Xianbo,et al. Pore structure of soft and hard coal and its influence on gas desorption characteristics under variable pressure[J]. Safety in Coal Mines,2018,49(12):21−26.
|
[38] |
LIU Yanwei,WANG Dandan,HAO Fuchang,et al. Constitutive model for methane desorption and diffusion based on pore structure differences between soft and hard coal[J]. International Journal of Mining Science and Technology,2017,27(6):937−944. doi: 10.1016/j.ijmst.2017.06.025
|
[39] |
LU Shouqing,CHENG Yuanping,QIN Liming,et al. Gas desorption characteristics of the high-rank intact coal and fractured coal[J]. International Journal of Mining Science and Technology,2015,25(5):819−825. doi: 10.1016/j.ijmst.2015.07.018
|
[40] |
GUO Haijun,CHENG Yuanping,REN Ting,et al. Pulverization characteristics of coal from a strong outburst-prone coal seam and their impact on gas desorption and diffusion properties[J]. Journal of Natural Gas Science and Engineering,2016,33:867−878. doi: 10.1016/j.jngse.2016.06.033
|
[41] |
朱庆忠,张小东,杨延辉,等. 影响沁南—中南煤层气井解吸压力的地质因素及其作用机制[J]. 中国石油大学学报(自然科学版),2018,42(2):41−49.
ZHU Qingzhong,ZHANG Xiaodong,YANG Yanhui,et al. Geological factors affecting desorption pressure of CBM wells in the southern and central-southern Qinshui Basin and their influencing mechanism[J]. Journal of China University of Petroleum(Edition of Natural Science),2018,42(2):41−49.
|
[42] |
LI Fengli,JIANG Bo,CHENG Guoxi,et al. Structural and evolutionary characteristics of pores-microfractures and their influence on coalbed methane exploitation in high-rank brittle tectonically deformed coals of the Yangquan mining area, northeastern Qinshui basin, China[J]. Journal of Petroleum Science and Engineering,2019,174:1290−1302. doi: 10.1016/j.petrol.2018.11.081
|
[43] |
王海超. 沁水盆地中南部煤系气储层物性及叠置成藏模式[D]. 徐州: 中国矿业大学, 2017.
WANG Haichao. Reservoir physical properties and superimposed accumulation model of coal measure gas in central-south Qinshui Basin[D]. Xuzhou: China University of Mining and Technology, 2017.
|
[44] |
陶 树. 沁南煤储层渗透率动态变化效应及气井产能响应[D]. 北京: 中国地质大学(北京), 2011.
TAO Shu. Dynamic variation effects of coal reservoir permeability and the response of gas productivity in southern Qinshui Basin[D]. Beijing: China University of Geosciences(Beijing), 2011.
|
[45] |
LIU Shiqi,SANG Shuxun,LIU Huihu,et al. Growth characteristics and genetic types of pores and fractures in a high-rank coal reservoir of the southern Qinshui basin[J]. Ore Geology Reviews,2015,64:140−151. doi: 10.1016/j.oregeorev.2014.06.018
|
[46] |
刘曰武,苏中良,方虹斌,等. 煤层气的解吸/吸附机理研究综述[J]. 油气井测试,2010,19(6):37−44. doi: 10.3969/j.issn.1004-4388.2010.06.007
LIU Yuewu,SU Zhongliang,FANG Hongbin,et al. Review on CBM desorption/adsorption mechanism[J]. Well Testing,2010,19(6):37−44. doi: 10.3969/j.issn.1004-4388.2010.06.007
|
[47] |
牟新竹,陈振乾. 多尺度分形多孔介质气体有效扩散系数的数学模型[J]. 东南大学学报(自然科学版),2019,49(3):520−526.
MOU Xinzhu,CHEN Zhenqian. Mathematical model for effective gas diffusion coefficient in multi-scale fractal porous media[J]. Journal of Southeast University(Natural Science Edition),2019,49(3):520−526.
|
[48] |
蔺亚兵,贾雪梅,马东民. 煤层气解吸滞后效应及其评判方法研究[J]. 煤炭科学技术,2016,44(S1):160−163.
LIN Yabing,JIA Xuemei,MA Dongmin. Research on CBM desorption hysteresis effects and its evaluation methods[J]. Coal Science and Technology,2016,44(S1):160−163.
|
[49] |
张小东,李朋朋,张 硕. 不同煤体结构煤的瓦斯放散特征及其影响机理[J]. 煤炭科学技术,2016,44(9):93−98.
ZHANG Xiaodong,LI Pengpeng,ZHANG Shuo. Gas emission features of coals with different coalbody structure and their influencing mechanism[J]. Coal Science and Technology,2016,44(9):93−98.
|
[50] |
刘珊珊,孟召平. 等温吸附过程中不同煤体结构煤能量变化规律[J]. 煤炭学报,2015,40(6):1422−1427.
LIU Shanshan,MENG Zhaoping. Study on energy variation of different coal-body structure coals in the process of isothermal adsorption[J]. Journal of China Coal Society,2015,40(6):1422−1427.
|
[51] |
赵文珍. 材料表面工程导论[M]. 西安: 西安交通大学出版社, 1998.
ZHAO Wenzhen. Introduction to material surface engineering[M]. Xi’an: Xi’an Jiaotong University Press, 1998.
|
[52] |
康志勤,李 翔,李 伟,等. 煤体结构与甲烷吸附/解吸规律相关性实验研究及启示[J]. 煤炭学报,2018,43(5):1400−1407.
KANG Zhiqin,LI Xiang,LI Wei,et al. Experimental investigation of methane adsorption/desorption behavior in coals with different coal-body structure and its revelation[J]. Journal of China Coal Society,2018,43(5):1400−1407.
|
[53] |
桑树勋,朱炎铭,张 井,等. 煤吸附气体的固气作用机理(Ⅱ)-煤吸附气体的物理过程与理论模型[J]. 天然气工业,2005,25(1):16−18,21. doi: 10.3321/j.issn:1000-0976.2005.01.005
SANG Shuxun,ZHU Yanming,ZHANG Jing,et al. Solid-gas Interaction mechanism of coal-adsorbed gas(Ⅱ)- Physical process and theoretical model of coal-adsorbed gas[J]. Natural Gas Industry,2005,25(1):16−18,21. doi: 10.3321/j.issn:1000-0976.2005.01.005
|
[54] |
张家平. 吸附剂的作用机理研究[J]. 中国化工贸易,2017,9(26):245. doi: 10.3969/j.issn.1674-5167.2017.26.221
ZHANG Jiaping. Study on the mechanism of adsorbent[J]. China Chemical Trade,2017,9(26):245. doi: 10.3969/j.issn.1674-5167.2017.26.221
|
[55] |
向 玲,李立松,李 新,等. 炭基催化剂比表面积、孔径与硫容关系研究[J]. 四川环境,2014,33(1):18−21.
XIANG Ling,LI Lisong,LI Xin,et al. Study on the relationship between specific surface area, pore volume and sulfur capacity of activated carbon catalyst[J]. Sichuan Environment,2014,33(1):18−21.
|
[56] |
王 林. 不同变质程度煤高温高压条件下甲烷扩散动力学特性研究[D]. 徐州: 中国矿业大学, 2019.
WANG Lin. Study on dynamic characteristics of methane diffusion in various rank coals under high temperature and high pressure[D]. Xuzhou: China University of Mining and Technology, 2019.
|
[57] |
叶建平,张 兵,WANG S. 山西沁水盆地柿庄北区块3#煤层注入埋藏CO2提高煤层气采收率试验和评价[J]. 中国工程科学,2012(2):38−44. doi: 10.3969/j.issn.1009-1742.2012.02.006
YE Jianping,ZHANG Bing,WANG S. Test of and evaluation on elevation of coalbed methane recovery ratio by injecting and burying CO2 for 3# coal seam of north section of Shizhuang, Qingshui Basin, Shanxi[J]. Engineering Science,2012(2):38−44. doi: 10.3969/j.issn.1009-1742.2012.02.006
|
[58] |
张凯飞,刘汉涛,雷广平,等. 赵庄3#煤中甲烷吸附特性的分子模拟[J]. 中国科技论文,2020,15(1):94−99. doi: 10.3969/j.issn.2095-2783.2020.01.014
ZHANG Kaifei,LIU Hantao,LEI Guangping,et al. Molecular simulation of adsorption properties for methane in Zhaozhuang coal 3#[J]. China Sciencepaper,2020,15(1):94−99. doi: 10.3969/j.issn.2095-2783.2020.01.014
|
[59] |
王传涛. 黄陇煤田镜煤与暗煤CH4解吸机理研究[D]. 西安: 西安科技大学, 2019.
WANG Chuantao. CH4 desorption mechanism of vitrain and durain in Huangling-Longxian coalfield[D]. Xi’an: Xi’an University of Science and Technology, 2019.
|
[60] |
马东民,李 沛,张 辉,等. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学,2017,28(6):852−862.
MA Dongmin,LI Pei,ZHANG Hui,et al. Comparison on characteristics of adsorption/desorption of vitrain and durain in long-flame coal[J]. Natural Gas Geoscience,2017,28(6):852−862.
|
[61] |
张文静,琚宜文,孔祥文,等. 沁水盆地南部高煤级变形煤结构组成特征及其对吸附/解吸的影响[J]. 中国科学院大学学报,2014,31(1):98−107. doi: 10.7523/j.issn.2095-6134.2014.01.015
ZHANG Wenjing,JU Yiwen,KONG Xiangwen,et al. Structure and composition characteristics of deformed high-rank coals in the south of Qinshui Basin and their influence on CBM adsorption/desorption[J]. Journal of University of Chinese Academy of Science,2014,31(1):98−107. doi: 10.7523/j.issn.2095-6134.2014.01.015
|
[62] |
降文萍. 煤阶对煤吸附能力影响的微观机理研究[J]. 中国煤层气,2009,6(2):19−22,34. doi: 10.3969/j.issn.1672-3074.2009.02.005
JIANG Wenping. Microscopic mechanism study on the influence of coal rank on adsorption capacity[J]. China Coalbed Methane,2009,6(2):19−22,34. doi: 10.3969/j.issn.1672-3074.2009.02.005
|
[63] |
王凤林,袁 玉,张遂安,等. 不同含水及负压条件下煤层气等温吸附解吸规律[J]. 煤炭科学技术,2019,47(6):158−163.
WANG Fenglin,YUAN Yu,ZHANG Suian,et al. Isothermal adsorption and desorption of coalbed methane under different water saturation and negative pressure[J]. Coal Science and Technology,2019,47(6):158−163.
|
[64] |
张时音,桑树勋,杨志刚. 液态水对煤吸附甲烷影响的机理分析[J]. 中国矿业大学学报,2009,38(5):707−712.
ZHANG Shiyin,SANG Shuxun,YANG Zhigang. Mechanism analysis on the effect of liquid water on coal adsorbing methane[J]. Journal of China University of Mining & Technology,2009,38(5):707−712.
|
[65] |
XIE Jianlin,ZHAO Yangsheng,LI Xiangchun,et al. The experiment of gas adsorption and desorption under the action of high tempertature and high pressure water[J]. Procedia Engineering,2011,26:1547−1553. doi: 10.1016/j.proeng.2011.11.2337
|
[66] |
李树刚,赵鹏翔,潘宏宇,等. 不同含水量对煤吸附甲烷的影响[J]. 西安科技大学学报,2011,31(4):379−382,387.
LI Shugang,ZHAO Pengxiang,PAN Hongyu,et al. Effect of moisture on adsorption of methane on coal[J]. Journal of Xi'an University of Science and Technology,2011,31(4):379−382,387.
|
[67] |
高 正,马东民,陈 跃,等. 含水率对不同宏观煤岩类型甲烷吸附/解吸特征的影响[J]. 煤炭科学技术,2020,48(8):97−105.
GAO Zheng,MA Dongmin,CHEN Yue,et al. Effect of water content on adsorption/desorption of methane of different macroscopic lithotypes[J]. Coal Science and Technology,2020,48(8):97−105.
|
[68] |
刘俊刚,刘大锰,姚艳斌,等. 韩城示范区煤层气解吸规律及其地质影响因素[J]. 高校地质学报,2012,18(3):490−494.
LIU Jungang,LIU Dameng,YAO Yanbin,et al. Desorption and its geological controls of coalbed methane in Hancheng demonstration area[J]. Geological Journal of China Universities,2012,18(3):490−494.
|
[69] |
王公达,REN Tingxiang,齐庆新,等. 吸附解吸迟滞现象机理及其对深部煤层气开发的影响[J]. 煤炭学报,2016,41(1):49−56.
WANG Gongda,REN Tingxiang,QI Qingxin,et al. Mechanism of adsorption-desorption hysteresis and its influence on deep CBM recovery[J]. Journal of China Coal Society,2016,41(1):49−56.
|
[70] |
马东民,高 正,陈 跃,等. 不同温度下低、中、高阶煤储层甲烷吸附解吸特征差异[J]. 油气藏评价与开发,2020,10(4):17−24,38.
MA Dongmin,GAO Zheng,CHEN Yue,et al. Differences in methane adsorption and desorption characteristics of low, medium and high rank coal reservoirs at different temperatures[J]. Reservoir Evaluation and Development,2020,10(4):17−24,38.
|
[1] | CHEN Yue, MA Zhuoyuan, MA Dongmin, LI Weibo, LI Guofu, YANG Fu, ZHENG Chao, TENG Jinxiang, JI Yusong. Effects of wettability differences of different macroscopic composition of coal on methane adsorption and desorption[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 47-55. |
[2] | GAO Zheng, MA Dongmin, CHEN Yue, ZHANG Hui, ZHANG Lin. Effect of water content on adsorption/desorption of methane of different macroscopic lithotypes[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(8): 97-105. |
[3] | JIANG Yongdong, SONG Chao, WANG Sujian, KANG Zhipeng, WANG Peng, HUANG Kejun. Study on desorption and diffusion characteristics of coalbed methane under ultrasonic excitation[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(3). |
[4] | Dang Guangxing Wu Caifang Wang Bo, . Quantitative analysis of methane adsorption/desorption hysteresis effect on coal sample[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (5). |
[5] | Xiao Cangyan Wei Chongtao Guo Liwen, . Carbon monoxide adsorption and desorption features of medium and low rank coal[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (11). |
[6] | Ma Dongmin Zhang Hui Wang Guirong Yang Jianqiang Bai Huaidong Suo Genxi Xu Jianmin, . Study on isobaric adsorption/desorption features of coalbed methane in Hujiahe Coal Field[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (4). |
[7] | MA Dong-min CAO Shi-liu LI Ping ZHANG Hui WU Jie HAO Chun-sheng WANG Li, . Comparison on adsorption and desorption thermodynamics features between shale gas and coalbed methane[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (2). |
[8] | Study on CO2,CH4 and N2 Adsorption and Desorption Law of Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (2). |
[9] | Application of Adsorption Potential Theory to Study on Adsorption-Desorption of Coal Bed Methane[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (5). |
1. |
张荣军, 张喆, 白亚萍, 窦雨刚, 屈乐, 钟新宇, 孙健, 苗芷芃, 陈朝兵. 鄂尔多斯盆地东部深层煤岩气成藏特征及含气性规律研究. 钻采工艺. 2025(03)
![]() | |
2. |
贾宏伟. 煤岩吸附特征主控地质因素探讨. 煤炭技术. 2025(01): 103-107 .
![]() | |
3. |
郭晓娇,王雷,姚仙洲,李旭,张林科,王晓双. 深部煤岩地质特征及煤层气富集主控地质因素——以鄂尔多斯盆地东部M区为例. 石油实验地质. 2025(01): 17-26 .
![]() | |
4. |
杨科,张寨男,华心祝,刘文杰,吕鑫,池小楼,王长城,李彩青. 煤层顶板水平井分段压裂卸压瓦斯排采技术研究进展、关键科学问题与展望. 煤炭学报. 2025(02): 944-964 .
![]() | |
5. |
宋洪庆,都书一,杨焦生,王玫珠,赵洋,张继东,朱经纬. 基于机器学习的煤层气产能标定智能算法及影响因素分析. 工程科学学报. 2024(04): 614-626 .
![]() | |
6. |
周晋辉,郭晓阳,赵博,金智新,邓存宝,刘继勇,王蒙. 煤岩体系微观组分及孔隙结构对甲烷吸附的影响研究. 矿业安全与环保. 2024(01): 51-60+69 .
![]() | |
7. |
王波,马世纪,田志银,任永政,王军,黄万朋,王灵. 不同加载条件下含瓦斯煤岩强度极限邻域范围研究. 煤炭科学技术. 2024(07): 114-125 .
![]() | |
8. |
雷红艳. 真空充He法测定吸附罐剩余体积试验研究. 煤炭科学技术. 2024(S1): 86-93 .
![]() | |
9. |
王斌,刘学,涂琦,张尧,景慧情,宋鑫. 构造煤孔隙结构特征及其对瓦斯抽采的影响. 采矿技术. 2023(05): 163-170 .
![]() | |
10. |
段春生,王大鹏,赵树宇,穆效治. 煤体理化性质对硫化氢吸附的影响研究. 山西煤炭. 2023(04): 33-40 .
![]() |