Advance Search
LIU Shiqi,GAO Deyi,SANG Shuxun,et al. Characteristics of apparent resistivity of coals with different particle sizes[J]. Coal Science and Technology,2022,50(12):162−169. DOI: 10.13199/j.cnki.cst.2021-0340
Citation: LIU Shiqi,GAO Deyi,SANG Shuxun,et al. Characteristics of apparent resistivity of coals with different particle sizes[J]. Coal Science and Technology,2022,50(12):162−169. DOI: 10.13199/j.cnki.cst.2021-0340

Characteristics of apparent resistivity of coals with different particle sizes

Funds: 

National Natural Science Foundation of China (41727801, 41972168)

More Information
  • Received Date: January 13, 2022
  • Available Online: March 08, 2023
  • The theory and technology of stress released CBM development is a new theory and technology for CBM development of tectonically deformed coals. The research on the apparent resistivity of tectonically deformed coal can provide technical support for the identification of tectonically deformed coal for the stress release applied extraction of CBM. In this paper, the apparent resistivity and stress-strain monitoring experiments of tectonically deformed coals with different particle sizes were carried out under uniaxial loading, and the change law and response mechanism of the apparent resistivity in the stress-strain process were discussed. The results show that when the axial load is greater than the uniaxial compressive strength, the apparent resistivity of tectonically deformed coal decreases negatively exponentially with the increase of the axial load. When the axial load ≥10 MPa, the sensitivity of the apparent resistivity to the load decreases. With the particle size decreasing, the apparent resistivity of tectonically deformed coal decreases. Under the same axial load, the smaller the particle size is, the more sensitive the apparent resistivity of tectonically deformed coal is to the axial load. Affected by the accumulation mode and cementation type of coal particles, the structural coal of 5~200 mesh(4.000~0.075 mm) is special, with small apparent resistivity and relatively sensitive to load. The changes of apparent resistivity of tectonically deformed coal with axial load can be divided into four stages. In the compaction stage, the apparent resistivity decline of tectonically deformed coal depends on the accumulation mode and cementation type of coal particles. In elastic stage, particle size determines the apparent resistivity decline of tectonically deformed coal. The larger the grain size is, the better the original macropores and microcracks of structural coal remain, the stronger the compressibility is, and the higher the apparent resistivity reduction is. In the dilatation stage, radial deformation and micro-fracturing lead to the increase of apparent resistivity of tectonically deformed coal, while the mechanical strength of tectonically deformed coal determines the change characteristics of apparent resistivity. With the decrease of particle size, the cementation strength and uniaxial compressive strength of tectonically deformed coal increase, while the increase of apparent resistivity decreases. In the continuous elastic stage, crushing and compaction make the particle size distribution of tectonically deformed coal more uniform, and the stacking more compact, which enhances the electronic conductivity and decreases the apparent resistivity.

  • [1]
    侯泉林,李会军,范俊佳,等. 构造煤结构与煤层气赋存研究进展[J]. 中国科学:地球科学,2012,42(10):1487−1495.

    HOU Quanlin,LI Huijun,FAN Junjia,et al. Structure and coalbed methane occurrence in tectonically deformed coals[J]. Science China:Earth Science,2012,42(10):1487−1495.
    [2]
    桑树勋,周效志,刘世奇,等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报,2020,45(7):2531−2543.

    SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7):2531−2543.
    [3]
    JU Yiwen,LI Xiaoshi. New research progress on the ultrastructure of tectonically deformed coals[J]. Progress in Natural Science,2009,19(11):1455−1466. doi: 10.1016/j.pnsc.2009.03.013
    [4]
    赵文峰,熊建龙,张 军,等. 构造煤分布规律及对煤与瓦斯突出的影响[J]. 煤炭科学技术,2013,41(2):52−55.

    ZHAO Wenfeng,XIONG Jianlong,ZHANG Jun,et al. Structure coal distribution law and affected to coal and gas outburst in Sichuan coal mining area[J]. Coal Science and Technology,2013,41(2):52−55.
    [5]
    胡广青,姜 波,陈 飞,等. 不同类型构造煤特性及其对瓦斯突出的控制研究[J]. 煤炭科学技术,2012,40(2):111−115.

    HU Guangqing,JIANG Bo,CHEN Fei,et al. Study on different type structure coal features and gas outburst control[J]. Coal Science and Technology,2012,40(2):111−115.
    [6]
    徐云龙,李亚男,夏文安,等. 煤层气洞穴完井技术[J]. 探矿工程(岩土钻掘工程),2017,44(5):27−30.

    XU Yunlong,LI Yanan,XIA Wenan,et al. CBM cave completion technology[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2017,44(5):27−30.
    [7]
    周加佳. 碎软低渗煤层煤层气直井间接压裂技术及应用实践[J]. 煤田地质与勘探,2019,47(4):6−11.

    ZHOU Jiajia. Technology and application of indirect fracturing in CBM vertical well of broken and soft coal seam with low permeability[J]. Coal Geology & Exploration,2019,47(4):6−11.
    [8]
    李彬刚. 芦岭煤矿碎软低渗煤层高效抽采技术[J]. 煤田地质与勘探,2017,45(4):81−84.

    LI Bingang. Technology of CBM extraction in the crushed and soft coal seam in Luling coal mine[J]. Coal Geology & Exploration,2017,45(4):81−84.
    [9]
    童继强,杨德义,李志军,等. 构造煤物性参数测试的研究进展[J]. 地球物理学进展,2017,32(4):1650−1658. doi: 10.6038/pg20170432

    TONG Jiqiang,YANG Deyi,LI Zhijun,et al. Advances of physical property parameters test research in tectonic coal[J]. Progress in Geophysics,2017,32(4):1650−1658. doi: 10.6038/pg20170432
    [10]
    孟 磊. 煤电性参数的实验研究[D]. 焦作: 河南理工大学, 2010.

    MENG Lei. Experimental study on the electrical parameters of coal[D]. Jiaozuo: Henan Polytechnic University, 2010.
    [11]
    陈健杰,江林华,张玉贵,等. 不同煤体结构类型煤的导电性质研究[J]. 煤炭科学技术,2011,39(7):90−92,101.

    CHEN Jianjie,JIANG Linhua,ZHANG Yugui,et al. Study on coal conductive properties of different coal structure[J]. Coal Science and Technology,2011,39(7):90−92,101.
    [12]
    郭晓洁,雷东记,张玉贵. 构造煤复电性实验及其特征研究[J]. 煤田地质与勘探,2015,43(4):102−105.

    GUO Xiaojie,LEI Dongji,ZHANG Yugui. Electrical experiment and its characteristics of tectonic coal[J]. Coal Geology & Exploration,2015,43(4):102−105.
    [13]
    孟 磊,刘明举,王云刚. 构造煤单轴压缩条件下电阻率变化规律的实验研究[J]. 煤炭学报,2020,35(12):2028−2032.

    MENG Lei,LIU Mingju,WANG Yungang. Study on the rules of electrical resistivity variation of tectonic coal in uniaxial compression experiment[J]. Journal of China Coal Society,2020,35(12):2028−2032.
    [14]
    王云刚,魏建平,刘明举. 构造软煤电性参数影响因素的分析[J]. 煤炭科学技术,2010,38(8):77−80.

    WANG Yungang,WEI Jianping,LIU Mingju. Analysis on factors affected to electromagnetic parameters of tectonic soft seam[J]. Coal Science and Technology,2010,38(8):77−80.
    [15]
    杨 耸. 受载含瓦斯煤体电性参数的实验研究[D]. 焦作: 河南理工大学, 2012.

    YANG Song. Experimental study on the electrical parameters of being loaded gas-filled coal[D]. Jiaozuo: Henan Polytechnic University, 2012.
    [16]
    徐宏武. 煤层电性参数的测试和研究[J]. 煤田地质与勘探,1996,24(2):53−56.

    XU Hongwu. Research and test of coal seam electric parameters[J]. Coal Geology & Exploration,1996,24(2):53−56.
    [17]
    徐龙君,刘成伦,鲜学福. 频率对突出区煤导电性的影响[J]. 矿业安全与环保,2000,27(6):25−26.

    XU Longjun,LIU Chenglun,XIAN Xuefu. Effect of frequency on electric conductivity of coal in outburst zone[J]. Mining safety & Environmental Protection,2000,27(6):25−26.
    [18]
    解 滔,卢 军. 含裂隙介质中的视电阻率各向异性变化[J]. 地球物理学报,2020,63(4):1675−1694.

    XIE Tao,LU Jun. Apparent resistivity anisotropic variations in cracked medium[J]. Chinese Journal of Geophysics,2020,63(4):1675−1694.
    [19]
    杨 彩. 煤岩体电性时频特征研究[D]. 徐州: 中国矿业大学, 2017.

    YANG Cai. Electrical time-frequency characteristics research of coal-rock mass[D]. Xuzhou: China University of Mining and Technology, 2017.
    [20]
    杨海平. 基于双模式并行电法采集系统的激发极化法实验研究[D]. 徐州: 中国矿业大学, 2017.

    YANG Haiping. Experimental study on induced polarization method based on dual mode parallel electrical acquisition system[D]. Xuzhou: China University of Mining and Technology, 2017.
    [21]
    唐宝琳. 单轴压缩下岩石视电阻率图像变化的实验研究[D]. 北京: 中国地震局地球物理研究所, 2018.

    TANG Baolin. Experimental study on the changes of rock apparent resistivity image under uniaxial compression[D]. Beijing: The Institute of Geophysics, China Earthquake Administration, 2018.
    [22]
    王恩元,陈 鹏,李忠辉,等. 受载煤体全应力-应变过程电阻率响应规律[J]. 煤炭学报,2014,39(11):2220−2225.

    WANG Enyuan,CHEN Peng,LI Zhonghui,et al. Resistivity response in complete stress-strain process of loaded coal[J]. Journal of China Coal Society,2014,39(11):2220−2225.
  • Related Articles

    [1]WU Peng, ZHOU Guoxiao, LIU Shiwei, JIANG Fei, LIANG Tianqi, LI Yong. Detailed classification of coal structure based on micro resistivity imaging logging[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 137-144. DOI: 10.12438/cst.2023-1679
    [2]LIU Zhimin, LI Bing, PAN Yue, WU Miao. Research on focusing and deflection effect of detection with DC focusingmultipoint current sources in tunnel[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 174-179.
    [3]GUO Yuehui, LEI Dongji, ZHANG Yugui, ZHOU Meng, LI Jian. Experimental study on dispersion characteristics of complex resistivity of hydraulic fracturing coal[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(5): 198-202.
    [4]LI Mingxing, CHENG Jianyuan. Study on mine transient electromagnetic data processing methodbased on standard deviation standardization[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (5).
    [5]CHEN Peng, CHEN Xuexi, LIU Yongjie, YANG Tao. Gas pressure affected to coal resistivity law and mechanism[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (7).
    [6]Guo Xiaojie Huan Xuan Gong Weidong Zhang Yugui, . Study on coal complex resistivity anisotropy and characteristics of frequency response[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (4).
    [7]Modification and Practice on Location Arrangement of Coal Electrode Type Coal Pile Sensor[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (7).
    [8]Study on Electric Resistivity Method Applied to Dynamically Monitor and Measure Failure Deformation Law of Seam Floor[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (1).
    [9]Application of COMSOL Multiphysics to Pilot Detection Positive Evolution of Mine Resistivity[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (11).
  • Cited by

    Periodical cited type(7)

    1. 桑树勋,皇凡生,单衍胜,周效志,刘世奇,韩思杰,郑司建,刘统,王梓良,王峰斌. 碎软低渗煤储层强化与煤层气地面开发技术进展. 煤炭科学技术. 2024(01): 196-210 . 本站查看
    2. 李佐健,陆伟,卓辉,林龙,郑欣,李宇旋. 采空区煤岩多孔介质电性参数对电磁波传播规律影响研究. 山西焦煤科技. 2024(02): 11-14 .
    3. 王云刚,宋代东,张飞燕,李东会. 三轴压缩下含瓦斯煤体电阻率响应的实验研究. 河南理工大学学报(自然科学版). 2024(02): 8-14 .
    4. 秦玉金,苏伟伟,卢守青,李铭杰. 基于非稳态扩散的复合煤体能量失稳致灾研究. 煤炭科学技术. 2024(07): 126-138 . 本站查看
    5. 程刚,王振雪,施斌,朱鸿鹄,李刚强,田立勤. 采动覆岩变形多场光纤神经感知与安全保障体系构建研究. 煤炭科学技术. 2023(11): 104-118 . 本站查看
    6. 黄赞,周瑞琦,杨焦生,王玫珠,王大猛,马遵青,祁灵,门欣阳,方立羽. 煤层气开发井网样式和井距优化研究——以鄂尔多斯盆地大宁区块为例. 煤炭科学技术. 2023(S2): 121-131 . 本站查看
    7. 李悦达,王玉怀. 浸水加温条件下长焰煤电阻率变化规律实验研究. 华北科技学院学报. 2022(01): 21-26 .

    Other cited types(6)

Catalog

    Article views (141) PDF downloads (161) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return