Advance Search

ZHANG Xuhui,DU Yonggang,HUO Xinjian,et al. Design of flexible track and kinematics simulation of inspection robot in fully-mechanized mining face[J]. Coal Science and Technology,2022,50(12):240−246

. DOI: 10.13199/j.cnki.cst.2020-0705
Citation:

ZHANG Xuhui,DU Yonggang,HUO Xinjian,et al. Design of flexible track and kinematics simulation of inspection robot in fully-mechanized mining face[J]. Coal Science and Technology,2022,50(12):240−246

. DOI: 10.13199/j.cnki.cst.2020-0705

Design of flexible track and kinematics simulation of inspection robot in fully-mechanized mining face

Funds: 

Shaanxi Provincial Key R&D Program Funding Project (2018ZDCXL-GY-06-04)

More Information
  • Received Date: January 05, 2022
  • Accepted Date: January 14, 2022
  • Available Online: March 08, 2023
  • The problems of narrow space, frequent operation of equipment and complex positional relationship in coal mine fully-mechanized mining face make it difficult for the conventional inspection robot to run directly on the mining face and automated monitoring. According to the requirements of working conditions, combined with the environment and the action characteristics of equipment group, the design requirements of working face inspection track are proposed. A new type of flexible track for cross-seat inspection robot is designed by using modular design, simulation, and prototype test methods to realize the installation and adjustment of the working face environment and the adaptive compensation of the track itself when the installation equipment moves and deforms. Firstly, the mechanical structure of the flexible track of the inspection robot is designed and the installation operation mode is determined. Secondly, taking the track spanning on the side of the cable groove of the scraper conveyor as an example, the bending and pitching deformation of the scraper conveyor under three different working conditions of straightness, bending and fluctuation are analyzed and the kinematics simulation of the flexible track is carried out. Under three working conditions, the track can be completed with horizontal bending 0~5.4°, vertical inclination of 0~6° and telescopic deformation 0~120 mm with the working face equipment to meet the actual working conditions. When the inspection robot on board passes through the flexible track under three different working conditions, it can always maintain uniform linear motion in the main operating direction, and the horizontal or vertical direction fluctuates in the flexible transition section, and the amplitude of the fluctuation is within the safe allowable range. Finally, the physical prototype of the flexible track and the test platform of the working face are built to verify the performance of the flexible track of the working face inspection robot. The results show that the flexible track structure is designed reasonably and can be adapted to different working conditions of the mining face inspection. It is of great significance to realize the inspection of the robot in the fully mechanized working face under the coal mine.

  • [1]
    徐青云,赵耀江,李永明. 我国煤矿事故统计分析及今后预防措施[J]. 煤炭工程,2015(3):80−82. doi: 10.11799/ce201503027

    XU Qingyun,ZHAO Yaojiang,LI Yongming. Statistical analysis and precautions of coal mine accidents in China[J]. Coal Engineering,2015(3):80−82. doi: 10.11799/ce201503027
    [2]
    葛世荣. 煤矿机器人现状及发展方向[J]. 中国煤炭,2019,45(7):18−27. doi: 10.3969/j.issn.1006-530X.2019.07.004

    GE Shirong. Present situation and development direction of coal mine robots[J]. China Coal,2019,45(7):18−27. doi: 10.3969/j.issn.1006-530X.2019.07.004
    [3]
    刘林山,郝 铭. 井下巡检机器人仿生关节用超声电机驱动及控制技术探索与设计[J]. 黄金,2018,39(7):54−57.

    LIU Linshan,HAO Ming. Technical exploration and design of ultrasonic motor drive and control of inspection robots'biomimetic joint in underground mine[J]. Gold,2018,39(7):54−57.
    [4]
    张士海. 矿用巡检机器人在煤矿中的应用[J]. 煤矿机电,2016(5):76−79. doi: 10.16545/j.cnki.cmet.2016.05.023

    ZHANG Shihai. Application of mine inspection robot in coal mine[J]. Colliery Mechanical & Electrical Technology,2016(5):76−79. doi: 10.16545/j.cnki.cmet.2016.05.023
    [5]
    沈 超. 矿用自动巡检机器人在黄陵一号煤矿的应用[J]. 陕西煤炭,2020,39(2):118−120,141.

    SHEN Chao. Application of mine automatic inspection robot in Huangling No.1 mine[J]. Shaanxi Coal,2020,39(2):118−120,141.
    [6]
    周明静,裴文良,岑 强. 一种煤矿轨道巡检机器人的研制[J]. 制造业自动化,2018,40(4):107−108,114. doi: 10.3969/j.issn.1009-0134.2018.04.027

    ZHOU Mingjing,PEI Wenliang,CEN Qiang. Development of a coal mine track inspection robot[J]. Manufacturing Automation,2018,40(4):107−108,114. doi: 10.3969/j.issn.1009-0134.2018.04.027
    [7]
    裴文良,张树生,李军伟. 矿用巡检机器人设计及其应用[J]. 制造业自动化,2017,39(2):73−74,94. doi: 10.3969/j.issn.1009-0134.2017.02.018

    PEI Wenliang,ZHANG Shusheng,LI Junwei. The design and application of inspection robot for mine[J]. Manufacturing Automation,2017,39(2):73−74,94. doi: 10.3969/j.issn.1009-0134.2017.02.018
    [8]
    商德勇,杨 壘,杜少庆,等. 薄煤层工作面巡检机器人越障前动力学分析[J]. 机械设计与制造,2018(1):261−263. doi: 10.3969/j.issn.1001-3997.2018.01.075

    SHANG Deyong,YANG Lei,DU Shaoqing,et al. Dynamic analysis before the obstacle crossing of inspection robot in thin coal seam[J]. Machinery Design & Manufacture,2018(1):261−263. doi: 10.3969/j.issn.1001-3997.2018.01.075
    [9]
    商德勇,杨 壘,杜少庆,等. 基于ADAMS宏命令的薄煤层工作面巡检机器人建模与仿真[J]. 机床与液压,2017,45(15):20−22,38. doi: 10.3969/j.issn.1001-3881.2017.15.005

    SHANG Deyong,YANG Lei,DU Shaoqing. Modeling and simulation on inspection robot in thin coal seam based on ADASM Macro Instruction[J]. Machine Tool & Hydraulics,2017,45(15):20−22,38. doi: 10.3969/j.issn.1001-3881.2017.15.005
    [10]
    杨生华,周永昌,芮 丰,等. 薄煤层开采与成套装备技术的发展趋势[J]. 煤炭科学技术,2020,48(3):49−58.

    YANG Shenghua,ZHOU Yongchang,RUI Feng,et al. Development trend of thin coal seam mining and complete equipment technology[J]. Coal Science and Technology,2020,48(3):49−58.
    [11]
    姜俊英,周 展,曹现刚,等. 煤矿巷道悬线巡检机器人结构设计及仿真[J]. 工矿自动化,2018,44(5):76−81. doi: 10.13272/j.issn.1671-251x.2017110055

    JIANG Junying,ZHOU Zhan,CAO Xiangang,et al. Structure design of suspension line inspection robot in coal mine roadway and its simulation[J]. Industry and Mine Automation,2018,44(5):76−81. doi: 10.13272/j.issn.1671-251x.2017110055
    [12]
    靳子浩. 矿用悬挂式巡检机器人设计[D]. 西安: 西安科技大学, 2017.

    JIN Zihao. Design of mine suspended inspection robot[D]. Xi’an: Xi’an University of Science and Technology, 2017.
    [13]
    张树生,马静雅,岑 强,等. 煤矿综采工作面巡检机器人系统研究[J]. 煤炭科学技术,2019,47(10):136−140. doi: 10.13199/j.cnki.cst.2019.10.017

    ZHANG Shusheng,MA Jingya,CEN Qiang,et al. Research on inspection robot system for fully-mechanized mining face in coal mine[J]. Coal Science and Technology,2019,47(10):136−140. doi: 10.13199/j.cnki.cst.2019.10.017
    [14]
    索智文. 煤矿综采工作面无人化开采技术研究[J]. 工矿自动化,2017,43(1):22−26. doi: 10.13272/j.issn.1671-251x.2017.01.006

    SUO Zhiwen. Study on unmanned mining technology of fully mechanized coal mining face[J]. Industry and Mine Automation,2017,43(1):22−26. doi: 10.13272/j.issn.1671-251x.2017.01.006
    [15]
    张袁浩,陈杨阳,王小蕾. 煤矿机器人应用场景需求分析[J]. 内蒙古煤炭经济,2019(18):1−3. doi: 10.3969/j.issn.1008-0155.2019.18.002

    ZHANG Yuanhao,Chen Yangyang,WANG Xiaolei. Demand analysis of coal mine robot application scenarios[J]. Inner Mongolia Coal Economy,2019(18):1−3. doi: 10.3969/j.issn.1008-0155.2019.18.002
    [16]
    李学民. 矿用巡检机器人关键技术分析[J]. 煤矿机械,2018,39(5):71−73. doi: 10.13436/j.mkjx.201805025

    LI Xuemin. Key technologies analysis of mine inspection robot[J]. Coal Mine Machinery,2018,39(5):71−73. doi: 10.13436/j.mkjx.201805025
    [17]
    张旭辉,周 颖,杨文娟,等. 位姿检测技术在煤矿井下工作面巡检机器人中的应用[J]. 传感器与微系统,2020,39(5):152−155,160.

    ZHANG Xuhui,ZHOU Ying,YANG Wenjuan,et al. Application of positioning and pose detection technology in working face inspection robot underground coal mine[J]. Transducer and Microsystem Technologies,2020,39(5):152−155,160.
    [18]
    杨学军,王然风,等. 基于运动过程还原法的液压支架巡检机器人位姿检测[J]. 太原理工大学学报,2020,51(2):162−170. doi: 10.16355/j.cnki.issn1007-9432tyut.2020.02.002

    YANG Xuejun,WANG Ranfeng,et al. Pose measurement of detection robot in hydraulic supports based on the motion process restoration method[J]. Journal of Taiyuan University of Technology,2020,51(2):162−170. doi: 10.16355/j.cnki.issn1007-9432tyut.2020.02.002
    [19]
    韩菲娟,任 芳,杨兆建,等. 综采工作面“三机”运动仿真研究[J]. 工矿自动化,2018,44(9):15−19. doi: 10.13272/j.issn.1671-251x.2018030080

    HAN Feijuan,REN Fang,YANG Zhaojian,et al. Simulation research on motion of three machines on fully mechanized coal mining face[J]. Industry and Mine Automation,2018,44(9):15−19. doi: 10.13272/j.issn.1671-251x.2018030080
    [20]
    潘祥生. 矿用悬线式巡检机器人的设计及动力学分析[J]. 煤矿机械,2019,40(11):4−7. doi: 10.13436/j.mkjx.201911002

    Pan Xiangsheng. Design and dynamic analysis of suspension line patrol robot used in mine[J]. Coal Mine Machinery,2019,40(11):4−7. doi: 10.13436/j.mkjx.201911002
    [21]
    乔春光,王学文,谢嘉成,等. 基于采煤机运行轨迹的刮板输送机竖直面形态解算方法[J]. 工程设计学报,2018,25(5):495−502. doi: 10.3785/j.issn.1006-754X.2018.05.001

    QIAO Chunguang,WANG Xuewen,XIE Jiacheng et al. Vertical plane shape calculation method of scraper conveyor based on running track of shearer[J]. Chinese Journal of Engineering Design,2018,25(5):495−502. doi: 10.3785/j.issn.1006-754X.2018.05.001
  • Cited by

    Periodical cited type(8)

    1. 关士远. 综采工作面隔爆巡检机器人设计及工程实践. 煤炭科学技术. 2025(02): 363-373 . 本站查看
    2. 郑玉龙. 石油化工智能机器人集群化协同作业研究与应用. 工程机械. 2024(04): 211-214+17 .
    3. 王少聪,杜肖鹏,丁小明,王会强,李恺,何芬,张勇,牛树启,付媛,冯阔,邓浩楠. 温室巡检机器人关键技术研究进展与展望. 江苏农业科学. 2024(16): 1-10 .
    4. 廖辉,苏金辉. 管状带式输送机巡检机器人轨道热胀冷缩问题仿真与验证. 起重运输机械. 2024(19): 34-40 .
    5. 姚蔚利,智宝岩,霍城延,毛允德. 矿井热风炉高温环境下瓦斯巡检机器人集群的协调控制. 工业加热. 2024(11): 31-36+40 .
    6. 王智宇,孙国玺. 石化巡检机器人导航系统设计. 广东石油化工学院学报. 2024(06): 38-41+62 .
    7. 孙凌宇,李鑫宝,李洋,李庆翔,李文清. 石化巡检机器人设计与应用. 制造业自动化. 2023(02): 145-148 .
    8. 朱良辰,王世博,马光明,王赟,朱煜. 液压支架硬件在环仿真系统研究. 煤炭科学技术. 2023(S2): 294-305 . 本站查看

    Other cited types(2)

Catalog

    Article views (110) PDF downloads (176) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return