Citation: | ZHANG Jixiong,ZHOU Nan,LIU Hengfeng,et al. Research progress and prospect of underground utilization of coal-based solid waste functional materials[J]. Coal Science and Technology,2025,53(6):1−28. DOI: 10.12438/cst.2025-0605 |
The utilization of coal-based solid waste functional materials underground is a key technological pathway to achieving green coal mining and promoting the sustainable development of the coal industry. Based on a summary of the current status of coal-based solid waste disposal and utilization, this paper follows a function-oriented classification method to divide coal-based solid waste functional materials into six major categories: mine construction type, heat extraction type, water purification type, energy storage type, negative carbon type, and load-bearing type. The paper systematically introduces the classification and properties of coal-based solid waste functional materials, deeply explores the mechanisms and methods for regulating the properties of these materials, and comprehensively looks forward to the development directions of coal-based solid waste functional materials. The research findings indicate that: through activation modification, fiber reinforcement, and gradation optimization, the mechanical properties and environmental adaptability of construction-type functional materials can be significantly enhanced; the thermal conductivity, specific heat capacity, and heat storage coefficient of heat extraction-type functional materials are 1.75, 2.12, and 1.72 times that of traditional materials, respectively, with the most significant influencing factor being the shaped phase-change materials; water purification-type functional materials effectively remove heavy metal ions from mine water through multiple reactions, including physical adsorption, ion exchange, surface complexation adsorption, and chemical precipitation; after electrical modification, energy storage-type functional materials can regulate their surface electronic structure and chemical properties, thereby improving the electrical conductivity, energy storage density, and cyclic stability of the materials; the internal mineralization and hydration products of negative carbon-type functional materials can strengthen their pore structure and further achieve long-term CO2 sequestration; load-bearing functional materials, as the fundamental materials for controlling the stability of rock layers and goaf areas, are often enhanced in terms of self-stability, mechanical properties, and conveying performance through particle size gradation, composite optimization, and mechanical activation. In summary, significant progress has been made in the composition, preparation methods, and property regulation of coal-based solid waste functional materials, and a theoretical system for coal-based solid waste functional materials has been basically established. Future research will focus on new methods for regulating material properties, new preparation technologies, and new application scenarios. The current research status and development trends comprehensively demonstrate that coal-based solid waste functional materials can not only effectively improve the resource utilization efficiency of coal-based solid waste but also achieve large-scale disposal and value-added utilization of coal-based solid waste.
[1] |
谢和平,张吉雄,高峰,等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报,2024,49(1):36−46.
XIE Heping,ZHANG Jixiong,GAO Feng,et al. Theory and technical conception of carbon-negative and high-efficient backfill mining in coal mines[J]. Journal of China Coal Society,2024,49(1):36−46.
|
[2] |
LIU H F,ZHANG J X,RODRIGUEZ-DONO A,et al. Utilization of mine waste heat in phase change rechargeable battery[J]. Applied Thermal Engineering,2023,233:121136. doi: 10.1016/j.applthermaleng.2023.121136
|
[3] |
张凯,陈梦圆,冯少凯,等. 煤基固体废物“分级分质” 利用技术现状、问题及对策研究[J]. 环境保护,2024,52(14):16−22.
ZHANG Kai,CHEN Mengyuan,FENG Shaokai,et al. Research on the current status,problems and countermeasures of classification and qualitative utilization technology for coal-based solid waste[J]. Environmental Protection,2024,52(14):16−22.
|
[4] |
吴锦文,邓小伟,焦飞硕,等. 煤基灰/渣的大宗固废资源化利用现状及发展趋势[J]. 煤炭科学技术,2024,52(6):238−252. doi: 10.12438/cst.2023-1102
WU Jinwen,DENG Xiaowei,JIAO Feishuo,et al. Resource utilization status and development trend of bulk solid waste of coal-based ash/slag[J]. Coal Science and Technology,2024,52(6):238−252. doi: 10.12438/cst.2023-1102
|
[5] |
樊盼盼,樊晓婷,杨进进,等. 气流床煤气化细渣分级浮选及EDLVO理论分析[J]. 化工进展,2024,43(11):6475−6482.
FAN Panpan,FAN Xiaoting,YANG Jinjin,et al. Classified flotation of entrained-flow coal gasification fine slag and theoretical analysis of EDLVO[J]. Chemical Industry and Engineering Progress,2024,43(11):6475−6482.
|
[6] |
姜龙. 燃煤电厂粉煤灰综合利用现状及发展建议[J]. 洁净煤技术,2020,26(4):31−39.
JIANG Long. Comprehensiveutilization situation of fly ash in coal-fired power plants and its development suggestions[J]. Clean Coal Technology,2020,26(4):31−39.
|
[7] |
原野,宋慧平,张圆圆,等. 煤矸石综合利用政策及生态回填技术进展[J]. 环境工程技术学报,2025,15(3):788−797. doi: 10.12153/j.issn.1674-991X.20240704
YUAN Ye,SONG Huiping,ZHANG Yuanyuan,et al. Comprehensive utilization policies for coal gangue and progress in ecological backfilling technology[J]. Journal of Environmental Engineering Technology,2025,15(3):788−797. doi: 10.12153/j.issn.1674-991X.20240704
|
[8] |
刘浪,夏磊,王双明,等. 多源固废基固碳矿用材料制备及多场景利用关键技术[J]. 煤炭学报,2025,50(2):1203−1222.
LIU Lang,XIA Lei,WANG Shuangming,et al. Key technologies for preparation and multi scene utilization of multi-source solid waste based carbon fixation mining materials[J]. Journal of China Coal Society,2025,50(2):1203−1222.
|
[9] |
张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.
ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
|
[10] |
李飞,王福宁,金涛,等. 大宗煤基固废利用研究现状与展望[J]. 山东化工,2025,54(1):75−78. doi: 10.3969/j.issn.1008-021X.2025.01.019
LI Fei,WANG Funing,JIN Tao,et al. Research status and prospect on utilization of bulk coal-based solid waste[J]. Shandong Chemical Industry,2025,54(1):75−78. doi: 10.3969/j.issn.1008-021X.2025.01.019
|
[11] |
周楠,姚依南,宋卫剑,等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报,2020,37(1):136−146.
ZHOU Nan,YAO Yinan,SONG Weijian,et al. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering,2020,37(1):136−146.
|
[12] |
常瑞祺,张建波,李会泉,等. 煤基固废制备胶凝材料研究进展及应用[J]. 洁净煤技术,2024,30(2):316−330.
CHANG Ruiqi,ZHANG Jianbo,LI Huiquan,et al. Research progress and application of cementing materials prepared from coal based solid waste[J]. Clean Coal Technology,2024,30(2):316−330.
|
[13] |
黄靖维,任万兴,祖自银,等. 粉煤灰喷浆材料抗压强度的实验研究[J]. 煤矿安全,2022,53(3):31−35.
HUANG Jingwei,REN Wanxing,ZU Ziyin,et al. Experimental study on compressive strength of fly ash grouting material[J]. Safety in Coal Mines,2022,53(3):31−35.
|
[14] |
孙强,赵瑞,周楠,等. 煤基固废泡沫充填材料性能及空巷群围岩控制研究[J/OL]. 煤炭科学技术,2025:1−14 [2025−04−25]. http://kns.cnki.net/kcms/detail/11.2402.TD.20250425.1339.003.html.
SUN Qiang,ZHAO Rui,ZHOU Nan,et al. Study on the performance of coal based solid waste foam filling material and the control of surrounding rock of abandoned roadways[J/OL]. Coal Science and Technology,2025:1−14 [2025−04−25]. http://kns.cnki.net/kcms/detail/11.2402.TD.20250425.1339.003.html.
|
[15] |
ETERIGHO-IKELEGBE O,RICOHERMOSO E,HARRAR H,et al. Strong,lightweight,thermally stable,and hydrophobic sustainable structural composites produced from coal-based waste and polymer-derived SiOC ceramics[J]. Clean Technologies and Environmental Policy,2023,25(9):2865−2884. doi: 10.1007/s10098-023-02589-x
|
[16] |
SIRIWARDANE H J,KANNAN R S S,ZIEMKIEWICZ P F. Use of waste materials for control of acid mine drainage and subsidence[J]. Journal of Environmental Engineering,2003,129(10):910−915. doi: 10.1061/(ASCE)0733-9372(2003)129:10(910)
|
[17] |
张小艳,文德,赵玉娇,等. 矿山蓄热/储能充填体的热−力性能与传热过程[J]. 煤炭学报,2021,46(10):3158−3171.
ZHANG Xiaoyan,WEN De,ZHAO Yujiao,et al. Thermal-mechanical properties and heat transfer process of heat storage/energy storage backfill body in mine[J]. Journal of China Coal Society,2021,46(10):3158−3171.
|
[18] |
赵鹏,王刚,寇丽红,等. 气化灰渣浮选精炭制备活性炭的研究[J]. 燃料化学学报(中英文),2023,51(8):1193−1200. doi: 10.1016/S1872-5813(23)60354-8
ZHAO Peng,WANG Gang,KOU Lihong,et al. Preparation of flotation refined carbon from gasification slag[J]. Journal of Fuel Chemistry and Technology,2023,51(8):1193−1200. doi: 10.1016/S1872-5813(23)60354-8
|
[19] |
肖猛. 矸石基功能型胶结体力电磁耦合机理研究[D]. 徐州:中国矿业大学,2022.
XIAO Meng. Study on Loading-electrical-magnetically coupling law of gangue-based functionally cemented body[D]. Xuzhou:China University of Mining and Technology,2022.
|
[20] |
奚弦,桑树勋,刘世奇. 煤矿区固废矿化固定封存CO2与减污降碳协同处置利用的研究进展[J]. 煤炭学报,2024,49(8):3619−3634.
XI Xian,SANG Shuxun,LIU Shiqi. Progress in research of CO2 fixation and sequestration by coal mine solid waste mineralization and co-disposal of pollution and carbon reduction[J]. Journal of China Coal Society,2024,49(8):3619−3634.
|
[21] |
安百富,王家乐,贾磊,等. 粉煤灰−水泥−硅酸钠型充填材料强度特性研究[J]. 地下空间与工程学报,2024,20(S2):732−740.
AN Baifu,WANG Jiale,JIA Lei,et al. Experimental study and prediction model of strength characteristics of fly ash-cement-sodium silicate cementitious filling material[J]. Chinese Journal of Underground Space and Engineering,2024,20(S2):732−740.
|
[22] |
张吉雄,顾晓薇,周楠,等. 煤气化灰渣规模化分质梯级利用与高效处置技术研究[J/OL]. 中国矿业大学学报,2025:1−14 [2025−04−15]. https://link.cnki.net/doi/10.13247/j.cnki.jcumt.20240595.
ZHANG Jixiong,GU Xiaowei,ZHOU Nan,et al. Study on large-scale hierarchical utilization and efficient disposal technology of coal gasification ash[J/OL]. Journal of China University of Mining & Technology,2025:1−14 [2025−04−15]. https://link.cnki.net/doi/10.13247/j.cnki.jcumt.20240595.
|
[23] |
蔡瑞春,柳俊,聂新辉. 我国煤炭清洁高效利用发展路径研究[J]. 煤炭经济研究,2024,44(12):100−105. doi: 10.3969/j.issn.1002-9605.2024.12.mtjjyj202412014
CAI Ruichun,LIU Jun,NIE Xinhui. Research on the development path of clean and efficient utilization of coal in China[J]. Coal Economic Research,2024,44(12):100−105. doi: 10.3969/j.issn.1002-9605.2024.12.mtjjyj202412014
|
[24] |
ZHANG X Y,LI C Q,ZHENG S L,et al. A review of the synthesis and application of zeolites from coal-based solid wastes[J]. International Journal of Minerals,Metallurgy and Materials,2022,29(1):1−21.
|
[25] |
孙兰. 功能材料及应用[M]. 成都:四川大学出版社,2015.
|
[26] |
康世龙. 机械活化矸石基喷浆材料性能及稳定性研究[D]. 徐州:中国矿业大学,2024.
KANG Shilong. Study on properties and stability of mechanically activated gangue-based shotcrete material[D]. Xuzhou:China University of Mining and Technology,2024.
|
[27] |
赵成燚. 煤矸石路基填料力学性能及结构特征研究[D]. 徐州:中国矿业大学,2024.
ZHAO Chengyi. Study on the mechanical properties and structural characteristics of coal gangue as roadbed fill material[D]. Xuzhou:China University of Mining and Technology,2024.
|
[28] |
马永东. 不同聚合物−矸石充填材料承载特性宏细观研究[D]. 徐州:中国矿业大学,2020.
MA Yongdong. Macroscopic and mesoscopic study on bearing characteristics of different polymer-gangue filling materials[D]. Xuzhou:China University of Mining and Technology,2020.
|
[29] |
LIU Y N,HAN F L,LI N,et al. Study on the synergistic preparation of functional soil from multiple coal-based solid wastes[J]. Frontiers in Environmental Science,2025,12:1502552. doi: 10.3389/fenvs.2024.1502552
|
[30] |
郑丽辉,周跃进,张雷鸣,等. 矸石聚合物充填材料承载特性试验研究[J]. 煤炭科学技术,2022,50(9):222−229.
ZHENG Lihui,ZHOU Yuejin,ZHANG Leiming,et al. Experimental research on load-bearing characteristics of gangue polymer backfilling material[J]. Coal Science and Technology,2022,50(9):222−229.
|
[31] |
刘恒凤. 深部矿山相变蓄热功能充填采热机理及方法研究[D]. 徐州:中国矿业大学,2023.
LIU Hengfeng. Study on the mechanism and method of heat extraction using phase-change heat-storage functional backfilling in deep mines [D]. Xuzhou:China University of Mining and Technology,2023.
|
[32] |
刘恒凤,王九红,翟勃,等. 矿山功能充填采热结构传热规律及其相变行为[J]. 采矿与安全工程学报,2025,42(1):28−39.
LIU Hengfeng,WANG Jiuhong,ZHAI Bo,et al. Study on the heat transfer law and phase change behavior of geothermal exploitation structure by the functional backfilling mining method[J]. Journal of Mining & Safety Engineering,2025,42(1):28−39.
|
[33] |
LI B Y,DING L W,ZHANG J X,et al. A novel multi-level and multi-branch geothermal well system for synergetic geothermal energy exploitation and mine heat hazard prevention:Numerical investigation[J]. Geothermics,2025,127:103264. doi: 10.1016/j.geothermics.2025.103264
|
[34] |
LI X Y,CHEN B M,LIU F,et al. Experimental study on the melting performance of phase change materials embedded with different material skeletons[J]. Applied Thermal Engineering,2024,236:121873. doi: 10.1016/j.applthermaleng.2023.121873
|
[35] |
欧阳神央. 煤基固废环境功能材料采空区充填净水机理及方法研究[D]. 徐州:中国矿业大学,2024
OUYANG Shenyang. Study on mechanism and method of filling clean water in goaf of coal-based solid waste environmental functional materials[D]. Xuzhou:China University of Mining and Technology,2024
|
[36] |
张国卿,宋舒波,王兴瑞,等. 煤固废基分子筛的制备及其应用进展[J]. 化工进展,2024,43(5):2311−2323.
ZHANG Guoqing,SONG Shubo,WANG Xingrui,et al. Recent advances in the synthesis and application of zeolites from coal-based solid wastes[J]. Chemical Industry and Engineering Progress,2024,43(5):2311−2323.
|
[37] |
ZHANG J X,LI B Y,XIE Y C,et al. Carbon negative backfill mining in coal mines for carbon neutralization:Chemical carbon fixation performances with mineralized gangue[J]. International Journal of Rock Mechanics and Mining Sciences,2025,186:106016. doi: 10.1016/j.ijrmms.2024.106016
|
[38] |
WANG C H,ZHANG D,CHEN H Y,et al. Preparation and properties of silicon-modified epoxy grouting material for repairing microcracks[J]. Journal of Materials in Civil Engineering,2022,34(3):04021479. doi: 10.1061/(ASCE)MT.1943-5533.0004118
|
[39] |
张玥,丁会敏,杨光,等. 煤基固体废弃物制备分子筛的研究进展[J]. 化学与粘合,2023,45(2):174−177. doi: 10.3969/j.issn.1001-0017.2023.02.018
ZHANG Yue,DING Huimin,YANG Guang,et al. Research progress in preparation of molecular sieves from coal-based solid waste[J]. Chemistry and Adhesion,2023,45(2):174−177. doi: 10.3969/j.issn.1001-0017.2023.02.018
|
[40] |
LI B Y,ZHANG J X,CHENG J P,et al. An analytical solution to periodical heat transfer problems of multilayer rocks for thermal energy storage in underground mines[J]. Journal of Energy Storage,2022,50:104320. doi: 10.1016/j.est.2022.104320
|
[41] |
中华人民共和国住房和城乡建设部. 岩土锚杆与喷射混凝土支护工程技术规范:GB 50086—2015[S]. 北京:中国计划出版社,2016.
|
[42] |
中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准:GB/T 50476—2019[S]. 北京:中国建筑工业出版社,2019.
|
[43] |
中华人民共和国交通运输部. 公路路基设计规范:JTG D30—2015[S]. 北京:人民交通出版社,2015.
|
[44] |
张昭. 改性粉煤灰砌块及巷旁支护材料研究[D]. 西安:西安科技大学,2022.
ZHANG Zhao. Study on modified fly ash block and roadside supporting materials[D]. Xi’an:Xi’an University of Science and Technology,2022.
|
[45] |
李开源. CO2在煤矿采空区矸石充填材料中的扩散与吸附特性研究[D]. 徐州:中国矿业大学,2021.
LI Kaiyuan. Study on diffusion and adsorption characteristics of CO2 in gangue filling materials in coal mine goaf[D]. Xuzhou:China University of Mining and Technology,2021.
|
[46] |
HUO B B,ZHANG Q,LI M,et al. Using recycled gangue to capture CO2 and prepare alkali-activated backfill paste:Adsorption and microevolution mechanisms[J]. Fuel,2024,358:130194. doi: 10.1016/j.fuel.2023.130194
|
[47] |
霍彬彬,张吉雄,周楠,等. 十二烷基硫酸钠对碱激发煤气化渣充填料浆封存CO2及流变性能的影响[J]. 采矿与安全工程学报,2024,41(6):1279−1288.
HUO Binbin,ZHANG Jixiong,ZHOU Nan,et al. Effect of sodium dodecyl sulfate on the CO2 sequestration and rheological properties of alkali-activated coal gasification slag backfill pastes[J]. Journal of Mining & Safety Engineering,2024,41(6):1279−1288.
|
[48] |
李百宜,张吉雄,刘恒凤,等. 煤矿采空区储能式充填技术及储能增效机制[J]. 采矿与安全工程学报,2022,39(6):1161−1168,1176.
LI Baiyi,ZHANG Jixiong,LIU Hengfeng,et al. Energy-storage-based filling technology and energy-storage-enhancement mechanism in coal mine goafs[J]. Journal of Mining and Safety Engineering,2022,39(6):1161−1168,1176.
|
[49] |
GUO Y M,ZHANG J X,LONG K,et al. Experimental study on CO2 sequestration capacity and mechanical characteristics evolution of solid wastes based carbon-negative backfill materials[J]. Construction and Building Materials,2024,440:137457. doi: 10.1016/j.conbuildmat.2024.137457
|
[50] |
姚波,王晓. 道路工程[M]. 南京:东南大学出版社,2020.
|
[51] |
DONG D,XIAO Y. Recent progress and challenges in coal-derived porous carbon for supercapacitor applications[J]. Chemical Engineering Journal,2023,470:144441. doi: 10.1016/j.cej.2023.144441
|
[52] |
XIONG S X,YANG N N,WANG X Q,et al. Preparation of hierarchical porous activated carbons for high performance supercapacitors from coal gasification fine slag[J]. Journal of Materials Science:Materials in Electronics,2022,33(18):14722−14734. doi: 10.1007/s10854-022-08392-6
|
[53] |
PRIYA D S,KENNEDY L J,ANAND G T. Emerging trends in biomass-derived porous carbon materials for energy storage application:A critical review[J]. Materials Today Sustainability,2023,21:100320. doi: 10.1016/j.mtsust.2023.100320
|
[54] |
郭亚超. 煤基固废分区注浆修复隔水关键层机理与方法研究[D]. 徐州:中国矿业大学,2024.
GUO Yachao. Mechanism and method of coal-based solid waste zonal grouting for repairing aquiclude key Strata[D]. Xuzhou:China University of Mining and Technology,2024.
|
[55] |
朱小钢. 干湿循环作用下煤矸石路基材料应用性能研究[J]. 西部交通科技,2023(4):36−38,78.
ZHU Xiaogang. Study on application performance of coal gangue subgrade material under dry-wet cycle[J]. Western China Communications Science & Technology,2023(4):36−38,78.
|
[56] |
王蕾. 冻融循环对路基填料回弹模量影响的试验研究[J]. 黑龙江交通科技,2023,46(5):40−42. doi: 10.3969/j.issn.1008-3383.2023.05.014
WANG Lei. Experimental study on effect of freeze-thaw cycle on resilience modulus of subgrade filler[J]. Communications Science and Technology Heilongjiang,2023,46(5):40−42. doi: 10.3969/j.issn.1008-3383.2023.05.014
|
[57] |
SHEN A Q,LIN S L,GUO Y C,et al. Relationship between flexural strength and pore structure of pavement concrete under fatigue loads and Freeze-thaw interaction in seasonal frozen regions[J]. Construction and Building Materials,2018,174:684−692. doi: 10.1016/j.conbuildmat.2018.04.165
|
[58] |
赵昱,刘喆,刘佳欣,等. 煤矸石制备环境功能材料的研究进展[J]. 化学通报,2022,85(9):1090−1095.
ZHAO Yu,LIU Zhe,LIU Jiaxin,et al. Research progress in environmental functional materials prepared from coal gangue[J]. Chemistry,2022,85(9):1090−1095.
|
[59] |
梁止水,高琦,刘豪伟,等. 煤矸石制备NaX型分子筛及其对Cd2+的吸附性能[J]. 东南大学学报(自然科学版),2020,50(4):741−747. doi: 10.3969/j.issn.1001-0505.2020.04.019
LIANG Zhishui,GAO Qi,LIU Haowei,et al. Synthesis of NaX zeolite from coal gangue and its adsorption capability for Cd2+[J]. Journal of Southeast University (Natural Science Edition),2020,50(4):741−747. doi: 10.3969/j.issn.1001-0505.2020.04.019
|
[60] |
李建民. 粉煤灰基多孔地质聚合物的制备及吸附性能研究[D]. 唐山:华北理工大学,2021.
LI Jianmin. Preparation and adsorption properties of porous geopolymers based on fly ash [D]. Tangshan:North China University of Science and Technology,2021.
|
[61] |
朱颖灿,张祖华,刘意,等. 地质聚合物基废水处理吸附材料研究进展[J]. 硅酸盐通报,2020,39(8):2458−2467.
ZHU Yingcan,ZHANG Zuhua,LIU Yi,et al. Geopolymer-based adsorbents for wastewater treatment:A review[J]. Bulletin of the Chinese Ceramic Society,2020,39(8):2458−2467.
|
[62] |
WANG H F,WANG X X,LI M L,et al. Porous materials applied in nonaqueous Li–O2 batteries:Status and perspectives[J]. Advanced Materials,2020,32(44):2002559. doi: 10.1002/adma.202002559
|
[63] |
曾会会,邢宝林,徐冰,等. 煤基碳纳米片宏观体的结构调控及电化学性能[J]. 煤炭学报,2021,46(4):1182−1193.
ZENG Huihui,XING Baolin,XU Bing,et al. Microstructural regulation of coal-based carbon nanosheets and their electrochemical performance[J]. Journal of China Coal Society,2021,46(4):1182−1193.
|
[64] |
LI J,CAO Y L,WANG L X,et al. Performance of coal-derived spherical porous carbon as anode materials for lithium ion batteries[J]. Journal of Inorganic Materials,2017,32(9):909. doi: 10.15541/jim20160655
|
[65] |
廖明月,雷智平,贾同鑫,等. 高硫煤基多孔碳材料的可控制备及其用于锂硫电池[J]. 洁净煤技术,2024,30(6):128−141.
LIAO Mingyue,LEI Zhiping,JIA Tongxin,et al. Fabrication of porous carbon materials derived from high sulfur coal for enhanced lithium sulfur batteries performance[J]. Clean Coal Technology,2024,30(6):128−141.
|
[66] |
王从泽. 低成本锂离子电池电极新材料的制备及性能研究[D]. 杭州:浙江工业大学,2020.
WANG Congze. Preparation and performance study of new low-cost electrode materials for lithium-ion batteries[D]. Hangzhou:Zhejiang University of Technology,2020.
|
[67] |
SUN Z H,ZHOU N,LI M,et al. Functional control engineering of coal gangue electrocatalyst with amorphous SiCX/SiOX active layer loading enables efficient Li-O2 batteries[J]. Applied Sciences,2023,13(9):5551. doi: 10.3390/app13095551
|
[68] |
ZHANG X,ZHAO R B,ZHANG N,et al. Insight to unprecedented catalytic activity of double-nitrogen defective metal-free catalyst:Key role of coal gangue[J]. Applied Catalysis B:Environmental,2020,263:118316. doi: 10.1016/j.apcatb.2019.118316
|
[69] |
王国栋. 高钙固废衍生Ni基双功能材料CO2吸附—催化实验研究[D]. 南京:南京师范大学,2022.
WANG Guodong. Experimental study on CO2 adsorption and catalysis of ni-based bifunctional materials derived from high-calcium solid waste[D]. Nanjing:Nanjing Normal University,2022.
|
[70] |
李杰,孙明福,于继图,等. 磷掺杂煤基碳纤维的制备及其储锂性能[J]. 洁净煤技术,2025,31(1):148−158.
LI Jie,SUN Mingfu,YU Jitu,et al. Microstructure regulation of coal humate-based graphitized carbon and their lithium storage properties[J]. Clean Coal Technology,2025,31(1):148−158.
|
[71] |
YANG G C,JIAO Y Q,YAN H J,et al. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation[J]. Advanced Materials,2020,32(17):2000455. doi: 10.1002/adma.202000455
|
[72] |
SUN Z H,ZHOU N,LI M,et al. Enhanced TiO2/SiCx active layer formed in situ on coal gangue/Ti3C2 MXene electrocatalyst as catalytic integrated units for efficient Li-O2 batteries[J]. Nanomaterials,2024,14(3):278. doi: 10.3390/nano14030278
|
[73] |
SUN Z H,HU Y J,ZENG K,et al. Turn “waste” into wealth:MoO2@coal gangue electrocatalyst with amorphous/crystalline heterostructure for efficient Li–O2 batteries[J]. Small,2023,19(27):2208145. doi: 10.1002/smll.202208145
|
[74] |
白汝展. 煤液化残渣碳电极强化电解水析氢耦合制碳量子点[D]. 呼和浩特:内蒙古工业大学,2024.
BAI Ruzhan. Coal liquefaction residue carbon electrode enhanced electrolysis of water to produce hydrogen coupling preparation of carbon dots[D]. Hohhot:Inner Mongolia University of Tehchnology,2024.
|
[75] |
HAN S Y,WANG C H,SHI Y M,et al. Membrane-free selective oxidation of thioethers with water over a nickel phosphide nanocube electrode[J]. Cell Reports Physical Science,2021,2(6):100462. doi: 10.1016/j.xcrp.2021.100462
|
[76] |
WU B J,LI J R,LUO X X,et al. A round-trip journey of electrons:Electron catalyzed direct fixation of N2 to azos[J]. Chinese Journal of Catalysis,2025,68:386−393. doi: 10.1016/S1872-2067(24)60179-8
|
[77] |
POWER I M,WILSON S,DIPPLE G M. Serpentinite carbonation for CO2 sequestration[J]. Elements,2013,9(2):115−121. doi: 10.2113/gselements.9.2.115
|
[78] |
李猛. 矸石充填材料力学行为及控制岩层移动机理研究[D]. 徐州:中国矿业大学,2018.
LI Meng. Mechanical behaviour of gangue backfill material and control mechanism of strata movement[D]. Xuzhou:China University of Mining and Technology,2018.
|
[79] |
李凤铭. 散体物料机械夯实工艺仿真及充填效果量化分析[D]. 徐州:中国矿业大学,2024.
LI Fengming. Simulation of mechanical compaction process of bulk materials and quantitative analysis of filling effect[D]. Xuzhou:China University of Mining and Technology,2024.
|
[80] |
侯玉亭,张羽者,张英超,等. 煤泥基胶结充填材料性能及充填加固效果研究[J/OL]. 金属矿山,2024:1−12 [2024−06−25]. http://kns.cnki.net/kcms/detail/34.1055.td.20240624.1602.011.html.
HOU Yuting,ZHANG Yuzhe,ZHANG Yingchao,et al. Study on the influence of coal slime-based cemented filling material performance and the effect of filling reinforcement strength increase[J/OL]. Metal Mine,2024:1−12 [2024−06−25]. http://kns.cnki.net/kcms/detail/34.1055.td.20240624.1602.011.html.
|
[81] |
沈玲玲,丁鹿玮,张羽者,等. 面向残煤复采的煤泥基注浆充填材料机械活化机理研究[J]. 采矿与安全工程学报,2023,40(6):1243−1252.
SHEN Lingling,DING Luwei,ZHANG Yuzhe,et al. Research on the mechanical activation mechanism of coal slime based grouting filling materials for residual coal remining[J]. Journal of Mining & Safety Engineering,2023,40(6):1243−1252.
|
[82] |
赖万安. 红庆河煤矿离层区矸石流态化注浆充填弱化冲击矿压机理研究[D]. 徐州:中国矿业大学,2023.
LAI Wan’an. Study on mechanism of weakening rock burst by fluidized grouting filling of gangue in separation zone of hongqinghe coal mine[D]. Xuzhou:China University of Mining and Technology,2023.
|
[83] |
ZHOU N,DONG C W,ZHANG J X,et al. Influences of mine water on the properties of construction and demolition waste-based cemented paste backfill[J]. Construction and Building Materials,2021,313:125492. doi: 10.1016/j.conbuildmat.2021.125492
|