Citation: | YIN Xiwen,YU Qiuge,SUN Xiaodong,et al. Characteristics of ultrafine-nano bubbles and its enhancing mechanism for the mineralization reaction of fly ash[J]. Coal Science and Technology,2025,53(6):141−152. DOI: 10.12438/cst.2025-0447 |
The preparation of mine filling materials by the mineralization reaction of fly ash and CO2 from flue gas not only solves the problem of large-scale coal-based solid waste stockpiling but also reduces the carbon emissions of coal-fired power plants, which is an effective technique to achieve the low-carbon and green development. In response to the problems of low reaction efficiency and low CO2 conversion rate in the mineralization reaction, such mineralization reaction experiments of millimeter level aeration were conducted by using fly ash from Fugu Power Plant in the northern Shaanxi mining area. By the division of reaction process, the main affecting factors in each stage are identified, and an innovative technique of ultrafine-nano bubble aeration to improve the mineralization reaction efficiency is proposed. At the same time, the physical and chemical properties of ultrafine-nano bubbles are quantitatively characterized by Nanoparticle Tracking Analyzers and Zeta Potential Meter. As well as the strengthening mechanism of ultrafine-nano bubble aeration on the mineralization reaction were verified through laboratory experiments. The research results show that the mineralization reaction process is divided into three stages of slow-fast-slow according to the rate of pH value reduction. The main factor affecting the mineralization reaction efficiency in the first stage is the diffusion and dissolution rate of CO2 gas in the slurry. While in the second and third stage, it is the leaching rate of Ca2+ and Mg2+ from fly ash. At the same time, the particle size and concentration distribution of ultrafine-nano bubbles are monitored by Nanoparticle Tracking Analyzers. According to the results, the D90, D50, and D10 of ultrafine-nano bubbles are 207.55 nm, 122.15 nm, and 81.9 nm, respectively, and the bubbles can stay in water for up to 660 minutes. The featuring of small particle size, high concentration , long residence time in water and large specific surface area, which can enhance the mass transfer efficiency. By the measured results of Zeta potential, the Zeta potential of ultrafine-nano bubbles is found to be –14.63 to –18.05 mV, while the Zeta potential of fly ash slurry is +3.34 to +3.56 mV and they can adsorb each other to further enhance the mass transfer efficiency. Through the mineralization reaction experiments under the aeration of ultrafine-nano bubbles, it is found that the mineralization reaction efficiency of ultrafine nanobubble aeration is increased by 38.78%, and the CO2 conversion rate is increased by 67.60% verifying the strengthening effect of ultrafine nanobubble aeration on the mineralization reaction. The research results can guide development of mineralization reactors and process flow design, promote the harmless, large-scale, and resourceful utilization of fly ash, and assist in the “dual carbon goals”.
[1] |
中华人民共和国国家统计局. 2024年中国统计年鉴[M]. 北京:中国统计出版设计,2024.
|
[2] |
于秋鸽,尹希文,樊振丽,等. 基于矿化反应过程三阶段划分的粉煤灰高效矿化方法研究[J]. 煤炭科学技术,2024,52(6):253−260. doi: 10.12438/cst.2024-0151
YU Qiuge,YIN Xiwen,FAN Zhenli,et al. Study on efficient mineralization method of fly ash based on three-stage division in reaction process[J]. Coal Science and Technology,2024,52(6):253−260. doi: 10.12438/cst.2024-0151
|
[3] |
甘志超,尹希文,纪龙. 粉煤灰的CO2矿化降碱反应特性研究[J]. 煤炭工程,2023,55(8):154−158.
GAN Zhichao,YIN Xiwen,JI Long. Performance of CO2 mineralization and alkaline reduction of coal fly ash[J]. Coal Engineering,2023,55(8):154−158.
|
[4] |
中研产业研究院. 2024—2029年中国粉煤灰行业深度分析及发展前景预测报告[R/OL]. (2024−11−28)[2025−05−30]. https://www.chinairn.com/news/20241128/104620694.shtml.
|
[5] |
于小琨,崇诗佳,崔悦,等. 粉煤灰综合利用商业模式探究[J]. 环境保护与循环经济,2023,43(1):1−7. doi: 10.3969/j.issn.1674-1021.2023.01.001
YU Xiaokun,CHONG Shijia,CUI Yue,et al. Study on business model of comprehensive utilization of fly ash[J]. Environmental Protection and Circular Economy,2023,43(1):1−7. doi: 10.3969/j.issn.1674-1021.2023.01.001
|
[6] |
卢邦稳. 和谐共生资源综合利用大有可为[R/OL]. (2021−04−22)[2025−05−30]. https://www.cgs.gov.cn/ddztt/jdqr/52diqiuy/zhishu52/202104/t20210422_668804.html.
|
[7] |
中华人民共和国生态环境部,国家市场监督管理总局. 一般工业固体废物贮存和填埋污染控制标准:GB 18599—2020[S]. 北京:中国环境科学出版社,2021.
|
[8] |
尹希文,于秋鸽,甘志超,等. 高钙粉煤灰固碳降碱反应特性及煤矿井下规模化利用新途径[J]. 煤炭学报,2023,48(7):2717−2727.
YIN Xiwen,YU Qiuge,GAN Zhichao,et al. Reaction characteristics of carbon fixation and alkali reduction in high calcium fly ash and new way of large-scale utilization in coal mine[J]. Journal of China Coal Society,2023,48(7):2717−2727.
|
[9] |
MONTES-HERNANDEZ G,PÉREZ-LÓPEZ R,RENARD F,et al. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash[J]. Journal of Hazardous Materials,2009,161(2-3):1347−1354. doi: 10.1016/j.jhazmat.2008.04.104
|
[10] |
BACK M,KUEHN M,STANJEK H,et al. Reactivity of alkaline lignite fly ashes towards CO2 in water[J]. Environmental Science & Technology,2008,42(12):4520−4526.
|
[11] |
秦波涛,蒋文婕,史全林,等. 矿井粉煤灰基防灭火技术研究进展[J]. 煤炭科学技术,2023,51(1):329−342.
QIN Botao,JIANG Wenjie,SHI Quanlin,et al. Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines[J]. Coal Science and Technology,2023,51(1):329−342.
|
[12] |
史全林,秦波涛,孙永江. 超声处理辅助粉煤灰浸出钙离子矿化CO2及其产物防灭火特性[J]. 煤炭学报,2025,50(2):1034−1046.
SHI Quanlin,QIN Botao,SUN Yongjiang. Ultrasound-assisted leaching of calcium ions from fly ash to mineralize CO2 and fire extinguishing characteristics of products[J]. Journal of China Coal Society,2025,50(2):1034−1046.
|
[13] |
王晓钧,陈悦,周洪庆,等. 粉煤灰机械研磨过程中硅氧四面体结构的变化趋向[J]. 硅酸盐学报,2001,29(4):389−391. doi: 10.3321/j.issn:0454-5648.2001.04.021
WANG Xiaojun,CHEN Yue,ZHOU Hongqing,et al. Changes of silicate tetrahedron of fly ash in mechanical grinding[J]. Journal of the Chinese Ceramic Society,2001,29(4):389−391. doi: 10.3321/j.issn:0454-5648.2001.04.021
|
[14] |
刘音,刘洋,周煜明,等. 机械研磨时间对粗粉煤灰基充填胶凝材料性能的影响[J]. 煤炭科学技术,2017,45(6):221−225.
LIU Yin,LIU Yang,ZHOU Yuming,et al. Mechanical grinding time affected to performances of reject fly ash-based backfill binding material[J]. Coal Science and Technology,2017,45(6):221−225.
|
[15] |
国家能源局. 燃煤电厂粉煤灰资源化利用分类规范:DL/T 2297—2021[S]. 北京:中国电力出版社,2021.
|
[16] |
北京师范大学无机化学教研室,华中师范大学无机化学教研室,等. 无机化学. 上册[M]. 北京:高等教育出版社,1981.
|
[17] |
翁伯琦. 酸碱理论与溶液pH计算[J]. 福建农业科技,1985,16(3):51−52.
WENG (Bai| Bo)(Qi). Acid-base theory and solution pH calculation[J]. Fujian Agricrltural Science and Technology,1985,16(3):51−52.
|
[18] |
纪龙. 利用粉煤灰矿化封存二氧化碳的研究[D]. 北京:中国矿业大学(北京),2018.
JI Long. Carbon dioxide sequestration by mineralisation of coal fly ash[D]. Beijing:China University of Mining & Technology- Beijing,2018.
|
[19] |
WANG T,HUANG H,HU X T,et al. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate[J]. Chemical Engineering Journal,2017,323:320−329. doi: 10.1016/j.cej.2017.03.157
|
[20] |
ZHAO S L,LYU J L,PENG W M,et al. A promising mineralization method of recycled hardened cement powder and its material evolution mechanism in Portland cement[J]. Industrial & Engineering Chemistry Research,2024,63(32):14083−14094.
|
[21] |
秦国伟,詹文林,刘勇,等. 微纳米气泡特性及其在石油领域内应用展望[J]. 应用化工,2024,53(12):3005−3010. doi: 10.3969/j.issn.1671-3206.2024.12.040
QIN Guowei,ZHAN Wenlin,LIU Yong,et al. Characteristics and its application of MNBs in petroleum field[J]. Applied Chemical Industry,2024,53(12):3005−3010. doi: 10.3969/j.issn.1671-3206.2024.12.040
|
[22] |
王瑞琦,吉永忠,兰清泉. 臭氧微纳米气泡技术处理油气田钻井废水的试验研究[J]. 环境工程技术学报,2024,14(4):1151−1157. doi: 10.12153/j.issn.1674-991X.20240203
WANG Ruiqi,JI Yongzhong,LAN Qingquan. Experimental study on treatment of drilling engineering wastewater by ozone micro-nano bubble technology for oil and gas fields[J]. Journal of Environmental Engineering Technology,2024,14(4):1151−1157. doi: 10.12153/j.issn.1674-991X.20240203
|
[23] |
宋占龙,汤涛,潘蔚,等. 微纳米气泡强化臭氧氧化降解含酚废水[J]. 化工进展,2024,43(8):4614−4623.
SONG Zhanlong,TANG Tao,PAN Wei,et al. Micro-nano bubbles enhance ozone oxidation and degradation of wastewater containing phenol[J]. Chemical Industry and Engineering Progress,2024,43(8):4614−4623.
|
[24] |
秦雅萍,任会学,方睿,等. 微纳米气泡强化臭氧高级催化氧化处理硝基苯废水的效果[J]. 环境工程技术学报,2025,15(2):584−593. doi: 10.12153/j.issn.1674-991X.20240196
QIN Yaping,REN Huixue,FANG Rui,et al. Effects of advanced catalytic ozone oxidation enhanced by micro-nano bubbles on the treatment of nitrobenzene wastewater[J]. Journal of Environmental Engineering Technology,2025,15(2):584−593. doi: 10.12153/j.issn.1674-991X.20240196
|
[25] |
BSI. Fine bubble technology — General principles for usage and measurement of fine bubbles: BS ISO 20480-1[S].London: BSI Standards Publication, 2017.
|
[26] |
田立平,鞠玲,王晓波,等. 微纳米气泡制备技术及应用研究[J]. 能源与环境,2020(4):69−73.
TIAN Liping,JU Ling,WANG Xiaobo,et al. Study on preparation technology and application of micro-nano bubbles[J]. Energy and Environment,2020(4):69−73.
|
[27] |
彭昕翊,王承军,李波,等. 微纳米气泡与普通气泡曝气性能对比[J]. 南昌大学学报(理科版),2024,48(1):64−70.
PENG Xinyi,WANG Chengjun,LI Bo,et al. Comparative scientific research on aeration performance of micro nano bubbles and ordinary large bubbles[J]. Journal of Nanchang University (Natural Science),2024,48(1):64−70.
|
[28] |
时玉龙,王三反,武广,等. 加压溶气气浮微气泡产生机理及工程应用研究[J]. 工业水处理,2012,32(2):20−23. doi: 10.3969/j.issn.1005-829X.2012.02.005
SHI Yulong,WANG Sanfan,WU Guang,et al. Study on the mechanism of the micro-bubble formation of pressure dissolved air flotation and application[J]. Industrial Water Treatment,2012,32(2):20−23. doi: 10.3969/j.issn.1005-829X.2012.02.005
|
[29] |
宋声义,李中杨. 微纳米气泡的生成机理与实验研究[J]. 机械工程与自动化,2023(3):31−33. doi: 10.3969/j.issn.1672-6413.2023.03.011
SONG Shengyi,LI Zhongyang. Mechanism and experimental research on micron-nano bubbles[J]. Mechanical Engineering & Automation,2023(3):31−33. doi: 10.3969/j.issn.1672-6413.2023.03.011
|
[30] |
祝其非,陶日增,王志恒,等. 丁达尔效应的应用研究进展[J]. 激光杂志,2024,45(1):10−18.
ZHU Qifei,TAO Rizeng,WANG Zhiheng,et al. Advances in applied research on the Tyndall effect[J]. Laser Journal,2024,45(1):10−18.
|
[31] |
王鹏飞,邬高高,袁新虎,等. 微纳米气泡强化喷雾降尘试验研究[J]. 煤炭学报,2022,47(12):4495−4503.
WANG Pengfei,WU Gaogao,YUAN Xinhu,et al. An enhanced spray dust suppression method by micro-nano bubbles[J]. Journal of China Coal Society,2022,47(12):4495−4503.
|
[32] |
徐明进,李明远,彭勃,等. Zeta电位和界面膜强度对水包油乳状液稳定性影响[J]. 应用化学,2007,24(6):623−627. doi: 10.3969/j.issn.1000-0518.2007.06.005
XU Mingjin,LI Mingyuan,PENG Bo,et al. Effects of strength of interfacial film and zeta potential on oil-inwater emulsion stability[J]. Chinese Journal of Applied Chemistry,2007,24(6):623−627. doi: 10.3969/j.issn.1000-0518.2007.06.005
|
[33] |
周祖新. 工程化学[M]. 北京:化学工业出版社,2009.
|
[34] |
代朝猛,张峻博,段艳平,等. 微纳米气泡特性及在环境水体修复中的应用[J]. 同济大学学报(自然科学版),2022,50(3):431−438.
DAI Chaomeng,ZHANG Junbo,DUAN Yanping,et al. Characteristics of micro-nano bubbles and their application in environmental water remediation[J]. Journal of Tongji University (Natural Science),2022,50(3):431−438.
|