Citation: | JIN Jiaxu,GU Xiaowei,LI Mingxu,et al. Effect of aggregate surface strengthening on compressive damage of pre-placed coal gangue cemented backfill[J]. Coal Science and Technology,2025,53(6):277−291. DOI: 10.12438/cst.2025-0342 |
Coal gangue is the main solid waste derived from coal mining. Its disadvantages, such as significant quality fluctuation, high crushing value, large water absorption, and poor stability, limit the large-scale application of backfilling in goaf, which has become the technical bottleneck of resource utilization of solid waste in coal mines. Surface-strengthening treatment process of low-grade coal gangue using slurry-wrapping and powder-wrapping methods was explored. Pre-placed coal gangue cemented backfill (PCCB) was prepared using modified coal gangue and self-consolidating alkali-activated slag−tailings sand grout. Based on digital image correlation technology and acoustic emission technology, the effects of surface strengthening treatment of coal gangue on mechanical properties and uniaxial compression damage behavior of PCCB were studied. The results showed that both treatment processes significantly reduce the crushing value of coal gangue, thereby improving the mechanical properties of PCCB. The uniaxial compression failure mode of the PCCB specimen is mainly tensile failure. After the surface strengthening treatment of coal gangue, the crack initial rate and crack damage rate of PCCB are significantly improved, which can better resist crack growth during the compression damage process. When the coal gangue aggregate is treated by the slurry-wrapping method, the main influencing factor of the strength of PCCB is the crushing value of the modified coal gangue aggregate. The modified aggregate and the aggregate-matrix interface transition zone affect the strength of PCCB after the powder-wrapping method. The research results provide theoretical support and practical guidance for the application of PCCB in goaf backfilling, and open up a new way for green mine construction and resource recycling.
[1] |
胡炳南,郭文砚. 采煤沉陷区损害防治对策与技术发展方向[J]. 煤炭科学技术,2022,50(5):21−29.
HU Bingnan,GUO Wenyan. Counter measures and technical development direction of damage prevention in coal mining subsidence area[J]. Coal Science and Technology,2022,50(5):21−29.
|
[2] |
张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.
ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
|
[3] |
徐文彬,陈伟,张亚伦,等. 深部充填开采矸石−粉煤灰料浆流变特性研究[J]. 煤炭科学技术,2023,51(3):85−93.
XU Wenbin,CHEN Wei,ZHANG Yalun,et al. Research on rheological characteristics of gangue-fly ash slurry in deep filling mining[J]. Coal Science and Technology,2023,51(3):85−93.
|
[4] |
崔昕茹,霍雪萍,周炳杰,等. 我国煤矸石空间分布特征与分级分质利用路径[J]. 环境科学,2025,46(4):2281−2291.
CUI Xinru,HUO Xueping,ZHOU Bingjie,et al. Spatial distribution characteristics and graded utilization path of coal gangue in China[J]. Environmental Science,2025,46(4):2281−2291.
|
[5] |
JIN J X,QIN Z F,LÜ X L,et al. Rheology control of self-consolidating cement-tailings grout for the feasible use in coal gangue-filled backfill[J]. Construction and Building Materials,2022,316:125836. doi: 10.1016/j.conbuildmat.2021.125836
|
[6] |
朱磊,古文哲,袁超峰,等. 煤矸石浆体充填技术应用与展望[J]. 煤炭科学技术,2024,52(4):93−104.
ZHU Lei,GU Wenzhe,YUAN Chaofeng,et al. Application and prospect of coal gangue slurry filling technology[J]. Coal Science and Technology,2024,52(4):93−104.
|
[7] |
于乐乐,王爱国,仲小凡,等. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报,2024,38(20):186−194.
YU Lele,WANG Aiguo,ZHONG Xiaofan,et al. Research progress of mechanical and durability performance of concrete with coal gangue aggregates[J]. Materials Reports,2024,38(20):186−194.
|
[8] |
ZHAO H,WANG S F,WANG R,et al. Utilization of raw coal gangue as coarse aggregates in pavement concrete[J]. Construction and Building Materials,2023,378:131062. doi: 10.1016/j.conbuildmat.2023.131062
|
[9] |
顾炳伟,王培铭. 不同产地煤矸石特征及其火山灰活性研究[J]. 煤炭科学技术,2009,37(12):113−116,74.
GU Bingwei,WANG Peiming. Study on different coal rejects features and volcanic ash activity from different areas[J]. Coal Science and Technology,2009,37(12):113−116,74.
|
[10] |
JIAO Y W,QIAO J Q,JIA R J,et al. The influence of carbon imperfections on the physicochemical characteristics of coal gangue aggregates[J]. Construction and Building Materials,2023,409:133965. doi: 10.1016/j.conbuildmat.2023.133965
|
[11] |
ZHU Y Y,ZHU Y C,WANG A G,et al. Valorization of calcined coal gangue as coarse aggregate in concrete[J]. Cement and Concrete Composites,2021,121:104057. doi: 10.1016/j.cemconcomp.2021.104057
|
[12] |
ZHAO J,WANG A G,ZHU Y C,et al. Manufacturing ultra-high performance geopolymer concrete (UHPGC) with activated coal gangue for both binder and aggregate[J]. Composites Part B:Engineering,2024,284:111723. doi: 10.1016/j.compositesb.2024.111723
|
[13] |
CAO Z,CAO Y D,DONG H J,et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue[J]. International Journal of Mineral Processing,2016,146:23−28. doi: 10.1016/j.minpro.2015.11.008
|
[14] |
姚志鑫,穆川川,单俊鸿,等. 基于裹浆工艺的煤矸石混凝土性能研究[J]. 硅酸盐通报,2023,42(2):587−597. doi: 10.3969/j.issn.1001-1625.2023.2.gsytb202302022
YAO Zhixin,MU Chuanchuan,SHAN Junhong,et al. Performance of coal gangue concrete based on slurry wrapping technology[J]. Bulletin of the Chinese Ceramic Society,2023,42(2):587−597. doi: 10.3969/j.issn.1001-1625.2023.2.gsytb202302022
|
[15] |
ZHANG S H,CAO M Y,ZHANG K F,et al. Wrapped coal gangue aggregate enhancement ITZ and mechanical property of concrete suitable for large-scale industrial use[J]. Journal of Building Engineering,2023,72:106649. doi: 10.1016/j.jobe.2023.106649
|
[16] |
JIN J X,LI M X,LIU T,et al. Insights into factors influencing coal gangue-filled backfill cemented by self-consolidating alkali-activated slag grouts[J]. Construction and Building Materials,2024,411:134422. doi: 10.1016/j.conbuildmat.2023.134422
|
[17] |
QIN Z F,JIN J X,LÜ X L,et al. Insights into mechanical property and damage evaluation of a novel waste-based coal gangue-filled backfill[J]. Construction and Building Materials,2023,389:131802. doi: 10.1016/j.conbuildmat.2023.131802
|
[18] |
XU B,LI Y L,LI J,et al. Nonlinear stress growth and failure characteristics of gangue-cemented backfill[J]. Construction and Building Materials,2024,424:135938. doi: 10.1016/j.conbuildmat.2024.135938
|
[19] |
LI Y L,BIAN Y N,LIU C H. Damage and failure mechanism of basalt fiber-reinforced gangue-cemented backfill under uniaxial compression[J]. Construction and Building Materials,2023,400:132872. doi: 10.1016/j.conbuildmat.2023.132872
|
[20] |
SAEEDIFAR M,ZAROUCHAS D. Damage characterization of laminated composites using acoustic emission:A review[J]. Composites Part B:Engineering,2020,195:108039. doi: 10.1016/j.compositesb.2020.108039
|
[21] |
JIN J X,LIU T,LI M X,et al. Influence of biomass fly ash on durability of self-consolidating cement-tailings grout:Resistance to freeze-thaw cycles and sulfate attack[J]. Journal of Building Engineering,2024,93:109842. doi: 10.1016/j.jobe.2024.109842
|
[22] |
ZUO S H,XIAO J,YUAN Q. Comparative study on the new-old mortar interface deterioration after wet-dry cycles and heat-cool cycles[J]. Construction and Building Materials,2020,244:118374. doi: 10.1016/j.conbuildmat.2020.118374
|
[23] |
MA J Z,JIN J X,FENG J J,et al. Energy evolution and crack development characteristics of sandstone under freeze-thaw cycles by digital image correlation[J]. PLoS One,2023,18(4):e0283378. doi: 10.1371/journal.pone.0283378
|
[24] |
HAN G,QIN Z F,ZUO S H. Mechanical properties and microstructural features of biomass fly ash-modified self-compacting coal gangue-filled backfill[J]. Materials,2023,16(7):2789. doi: 10.3390/ma16072789
|
[25] |
BAKIR K,AYDEMIR D,BARDAK T. Dimensional stability and deformation analysis under mechanical loading of recycled PET-wood laminated composites with digital image correlation[J]. Journal of Cleaner Production,2021,280:124472. doi: 10.1016/j.jclepro.2020.124472
|
[26] |
许江,李伊,田傲雪,等. 声发射定位精度尺寸效应的试验研究[J]. 岩石力学与工程学报,2016,35(S1):2826−2835.
XU Jiang,LI Yi,TIAN Aoxue,et al. Experimental research on size effect of acoustic emission location accuracy[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):2826−2835.
|
[27] |
QIU H F,ZHANG F S,LIU L,et al. Experimental study on acoustic emission characteristics of cemented rock-tailings backfill[J]. Construction and Building Materials,2022,315:125278. doi: 10.1016/j.conbuildmat.2021.125278
|
[28] |
ZHAO K X,DAI Y P,JIA Z Y,et al. General fuzzy C-means clustering strategy:Using objective function to control fuzziness of clustering results[J]. IEEE Transactions on Fuzzy Systems,2022,30(9):3601−3616. doi: 10.1109/TFUZZ.2021.3119240
|
[29] |
黄杰忠,杨健,李东升. 环境影响下基于模糊C均值聚类和高斯混合模型的隐式损伤识别方法[J/OL]. 振动工程学报,2024:1−12 [2024−10−29]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZDGC20241024001&dbname=CJFD&dbcode=CJFQ.
HUANG Jiezhong,YANG Jian,LI Dongsheng. Implicit damage identification method based on fuzzy C-means clustering and Gaussian mixture model under changing environments[J/OL]. Journal of Vibration Engineering,2024:1−12 [2024−10−29]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZDGC20241024001&dbname=CJFD&dbcode=CJFQ.
|
[30] |
CARNÌ D L,SCURO C,LAMONACA F,et al. Damage analysis of concrete structures by means of acoustic emissions technique[J]. Composites Part B:Engineering,2017,115:79−86. doi: 10.1016/j.compositesb.2016.10.031
|
[31] |
YANG J,ZHAO K,YU X,et al. Fracture evolution of fiber-reinforced backfill based on acoustic emission fractal dimension and b-value[J]. Cement and Concrete Composites,2022,134:104739. doi: 10.1016/j.cemconcomp.2022.104739
|
[32] |
宋勇军,程柯岩,孟凡栋. 冻融作用下裂隙岩石损伤破坏声发射特性研究[J]. 采矿与安全工程学报,2023,40(2):408−419.
SONG Yongjun,CHENG Keyan,MENG Fandong. Research on acoustic emission characteristics of fractured rock damage under freeze-thaw action[J]. Journal of Mining & Safety Engineering,2023,40(2):408−419.
|
[33] |
JCMS-IIIB5706. Monitoring method for active cracks in concrete by acoustic emission[S]. Federation of Construction Material Industries,2003.
|
[34] |
FAN X Q,HU S W,LU J,et al. Acoustic emission properties of concrete on dynamic tensile test[J]. Construction and Building Materials,2016,114:66−75. doi: 10.1016/j.conbuildmat.2016.03.065
|
[35] |
WU C L,ZHANG C,LI J W,et al. A sustainable low-carbon pervious concrete using modified coal gangue aggregates based on ITZ enhancement[J]. Journal of Cleaner Production,2022,377:134310. doi: 10.1016/j.jclepro.2022.134310
|
[36] |
KASANIYA M,THOMAS M D A,MOFFATT T,et al. Microstructure and microanalysis of Portland cement pastes with high w/c ratios[J]. Cement and Concrete Research,2024,183:107575. doi: 10.1016/j.cemconres.2024.107575
|
[37] |
ZHAO H Y,ZHANG L C,WU Z H,et al. Aggregate effect on the mechanical and fracture behaviours of concrete[J]. International Journal of Mechanical Sciences,2023,243:108067. doi: 10.1016/j.ijmecsci.2022.108067
|
[38] |
冯春花,陈钰,黄益宏,等. 煤矸石骨料及其改性技术研究进展[J]. 硅酸盐通报,2023,42(1):133−143. doi: 10.3969/j.issn.1001-1625.2023.1.gsytb202301013
FENG Chunhua,CHEN Yu,HUANG Yihong,et al. Research progress on coal gangue aggregate and its modification technology[J]. Bulletin of the Chinese Ceramic Society,2023,42(1):133−143. doi: 10.3969/j.issn.1001-1625.2023.1.gsytb202301013
|
[39] |
QIAN X,LI M X,WANG J L,et al. A bio-inspired,plant-derived admixture for metakaolin blended cement mortars[J]. Construction and Building Materials,2022,354:129185. doi: 10.1016/j.conbuildmat.2022.129185
|
[40] |
LONG W J,LIU J W,HE C. A facile approach to disperse metakaolin for promoting compressive strength of cement composites[J]. Construction and Building Materials,2023,404:133268. doi: 10.1016/j.conbuildmat.2023.133268
|
[41] |
JING H,LI M Y,ZHANG Y,et al. Hydration kinetics,microstructure and physicochemical performance of metakaolin-blended cementitious composites[J]. Construction and Building Materials,2023,408:133756. doi: 10.1016/j.conbuildmat.2023.133756
|
[42] |
赵康,伍俊,严雅静,等. 尾砂胶结充填体裂纹演化多尺度特征[J]. 岩石力学与工程学报,2022,41(8):1626−1636.
ZHAO Kang,WU Jun,YAN Yajing,et al. Multi-scale characteristics of crack evolution of cemented tailings backfill[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(8):1626−1636.
|
[43] |
OHTSU M. Elastic wave methods for NDE in concrete based on generalized theory of acoustic emission[J]. Construction and Building Materials,2016,122:845−854. doi: 10.1016/j.conbuildmat.2015.12.137
|
[44] |
DZAYE E D,DE SCHUTTER G,AGGELIS D G. Monitoring early-age acoustic emission of cement paste and fly ash paste[J]. Cement and Concrete Research,2020,129:105964. doi: 10.1016/j.cemconres.2019.105964
|
[45] |
LV Z Q,JIANG A N,JIN J X. Influence of ultrafine diatomite on cracking behavior of concrete:An acoustic emission analysis[J]. Construction and Building Materials,2021,308:124993. doi: 10.1016/j.conbuildmat.2021.124993
|
[46] |
LI S L,ZHANG L G,GUO P,et al. Characteristic analysis of acoustic emission monitoring parameters for crack propagation in UHPC-NC composite beam under bending test[J]. Construction and Building Materials,2021,278:122401. doi: 10.1016/j.conbuildmat.2021.122401
|
[47] |
COMMITTEE R T. Recommendation of RILEM TC 212-ACD:Acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete[J]. Materials and Structures,2010,43(9):1183−1186. doi: 10.1617/s11527-010-9639-z
|
1. |
李黎黎,李合菊. 基于大数据的采煤机运行状态监测与评估. 煤矿机械. 2025(03): 208-211 .
![]() | |
2. |
王剑,张善兵,樊君. 基于地质保障+5G的智能透明开采技术研究. 能源科技. 2025(01): 10-13 .
![]() | |
3. |
王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 .
![]() | |
4. |
张楷鑫,胡小刚,杨文宇,刘朝,王嘉宇,上官星驰. 基于小波阈值改进EEMD的微震信号联合去噪方法及应用. 能源与环保. 2025(02): 95-100 .
![]() | |
5. |
张村,贾胜,华埜,宋启. 矿山三维地质建模研究进展:原理、方法与应用. 煤炭科学技术. 2025(02): 222-238 .
![]() | |
6. |
付翔,闫明. 煤炭开采技术的人工智能应用. 绿色矿山. 2025(01): 63-72 .
![]() | |
7. |
曹哲哲. 黄陵二号煤矿多维度地质模型大数据融合精准开采. 陕西煤炭. 2024(02): 126-129+141 .
![]() | |
8. |
齐爱玲,王雨,马宏伟. 基于改进门控循环神经网络的采煤机滚筒调高量预测. 工矿自动化. 2024(02): 116-123 .
![]() | |
9. |
问永忠. 综放工作面基于透明地质的智能协同开采技术. 陕西煤炭. 2024(05): 1-6 .
![]() | |
10. |
于建军,王建成,刘百祥. 基于地质物探数据的工作面透明地质模型构建研究与应用. 山东煤炭科技. 2024(04): 157-161+167+173 .
![]() | |
11. |
杨胜利,张燊,王旭东,张凯,辛德林,翟瑞昊. 煤与天然气协同开采理论与技术构想. 煤炭科学技术. 2024(04): 50-68 .
![]() | |
12. |
余俊辉. 煤矿井下钻孔雷达技术在煤层顶底板探测中的应用. 能源与节能. 2024(05): 263-267+272 .
![]() | |
13. |
丁序海,张侯,陈录平,党国杰. 基于多频无线电坑透技术的煤矿地质综合勘探研究. 能源与环保. 2024(06): 82-87 .
![]() | |
14. |
朱墨然. 煤矿瓦斯抽采钻孔三维模拟及控制效果评价. 矿业安全与环保. 2024(03): 50-55+64 .
![]() | |
15. |
时宝,韩浩亮,庞博,包若羽,刘懿,伦嘉云. 新时期煤矿机械化与智能化发展现状及协同路径探讨. 煤炭科技. 2024(03): 1-6 .
![]() | |
16. |
李鑫超,周脉勇,李轩,祝永涛,秦涛. 基于工作面地质模型自适应开采的碰撞检测方法研究. 煤炭工程. 2024(07): 159-164 .
![]() | |
17. |
张宝军,乔永航. 煤矿液压牵引采煤机截割路径多目标规划方法及其工程应用. 液压气动与密封. 2024(09): 6-12 .
![]() | |
18. |
于斌,邰阳,徐刚,李勇,李东印,王世博,匡铁军,孟二存. 千万吨级综放工作面智能化放煤理论及关键技术. 煤炭科学技术. 2024(09): 48-67 .
![]() | |
19. |
高杬,霍金刚,吴博. 薄煤层高精度透明地质模型构建与应用. 陕西煤炭. 2024(11): 139-142+165 .
![]() | |
20. |
贺耀宜,代左朋,杨耀,屈世甲,张清,孙旭峰,张涛. 采煤工作面CH_4大样本数据感知关键技术及监测模式研究. 工矿自动化. 2024(11): 17-25+91 .
![]() | |
21. |
莫斌. 基于透明地质模型和煤岩识别的自主割煤技术实践探析. 中国煤炭. 2024(S1): 58-62 .
![]() | |
22. |
郭钊吾,宋晓夏,任海青,李凯杰,邓永鹏. 东周窑井田多尺度三维地质建模. 煤矿安全. 2023(01): 161-171 .
![]() | |
23. |
贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 .
![]() | |
24. |
符大利. 透明工作面采煤机规划调高策略研究. 煤矿安全. 2023(04): 226-231 .
![]() | |
25. |
胡腾飞,辛德林,陈一兵,刘艳,王昭舜. 万利一矿地质保障系统建设研究. 煤矿机械. 2023(05): 184-186 .
![]() | |
26. |
吴国庆,马彦龙. 地质透明化工作面内多种异常体的槽波解释方法研究. 煤炭科学技术. 2023(05): 149-160 .
![]() | |
27. |
胡南燕,黄建彬,罗斌玉,刘兰心,元宙昊. 透明岩石相似材料配比试验研究. 煤炭科学技术. 2023(06): 52-61 .
![]() | |
28. |
张意,康正明,冯宏,李飞,李新,韩雪. 方位电磁波仪器PeriScope水平井煤岩边界探测特性研究. 煤炭科学技术. 2023(06): 158-167 .
![]() | |
29. |
钮涛,张弘,张铁聪,董佳,贾瑞杰. 综采工作面自适应截割路径规划算法研究. 中国煤炭. 2023(08): 48-53 .
![]() | |
30. |
翟成,丛钰洲,陈爱坤,丁熊,李宇杰,朱薪宇,徐鹤翔. 中国煤矿瓦斯突出灾害治理的若干思考及展望. 中国矿业大学学报. 2023(06): 1146-1161 .
![]() | |
31. |
董博,李旭,史云,李磊,乔佳妮. 基于地质保障系统的煤矿安全开采规划控制方法. 煤矿安全. 2023(12): 167-174 .
![]() | |
32. |
王国法. 煤矿智能化最新技术进展与问题探讨. 煤炭科学技术. 2022(01): 1-27 .
![]() | |
33. |
原长锁,王峰. 综采工作面透明化开采模式及关键技术. 工矿自动化. 2022(03): 11-15+31 .
![]() | |
34. |
程建远,王保利,范涛,王云宏,蒋必辞. 煤矿地质透明化典型应用场景及关键技术. 煤炭科学技术. 2022(07): 1-12 .
![]() | |
35. |
朱梦博,程建远,刘浪,屈慧升,崔伟雄. 顺煤层钻孔约束的采煤工作面煤层迭代高精度建模方法研究. 采矿与安全工程学报. 2022(05): 879-890 .
![]() | |
36. |
张超林,王恩元,许江,彭守建. 瓦斯抽采中煤层参数动态响应及其应用. 煤炭科学技术. 2021(05): 127-134 .
![]() | |
37. |
姜琳,孙超,汪鹏,叶兰,刘立. 综采工作面智能化采煤系统关键技术及应用. 中国煤炭. 2021(06): 34-39 .
![]() | |
38. |
王世斌,于水,刘长来. 以系统化思维打造智能化开采建设新模式. 煤炭科学技术. 2021(S1): 1-7 .
![]() | |
39. |
李靖. 智能工作面多参量精准感知平台及应用分析. 内蒙古煤炭经济. 2021(14): 57-58 .
![]() |