Citation: | QI Tingye,CHENG Siyuan,FENG Guorui,et al. Preparation of alkali-activated steel slag-fly ash based full solid waste filling material and strength formation mechanism research[J]. Coal Science and Technology,2025,53(6):236−249. DOI: 10.12438/cst.2025-0316 |
To utilize steel slag solid waste resources, this study developed a fully solid-waste-based cemented coal backfill material using alkali-activated steel slag-fly ash cementitious material as a cement substitute and coal gangue as aggregate. The effects of activator (Na2SiO3) modulus and alkali concentration on both macroscopic properties and microstructural evolution of the cementitious system were systematically investigated. Optimal parameters were applied to prepare backfill materials with varying steel slag contents, with reaction mechanisms elucidated through XRD, SEM, and FT-IR analyses. Experimental results demonstrated that a steel slag∶ fly ash ratio of 6∶4 yielded compressive strengths of 5.35 MPa (7-day) and 8.71 MPa (28-day), showing 62.8% strength enhancement. With optimized activator parameters (modulus=1.75, concentration=8% Na2O equivalent), the 28-day compressive strength reached 20.85 MPa. Microstructural characterization revealed that alkali activation facilitated mineral phase dissociation in steel slag and fly ash, releasing Ca, Al, and Si ions to form polymerized C−(A)−S−H gels through hydration. The optimal mixture (coal gangue∶steel slag∶fly ash∶water=5∶4∶1∶2) exhibited 7-day and 28-day compressive strengths of 1.80 MPa and 2.94 MPa, respectively. SEM-EDS analysis confirmed the formation of dense interfacial transition zones through surface reactions between coal gangue and cementitious matrix, effectively reducing porosity and enhancing aggregate bonding strength. This work establishes an efficient pathway for preparing low-carbon coal gangue backfill materials with high solid-waste incorporation, demonstrating significant potential for large-scale steel slag utilization in sustainable mine engineering applications.
[1] |
钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1−13.
QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1−13.
|
[2] |
朱磊,古文哲,宋天奇,等. 采空区煤矸石浆体充填技术研究进展与展望[J]. 煤炭科学技术,2023,51(2):143−154.
ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress and prospect of coal gangue slurry backfilling technology in goaf[J]. Coal Science and Technology,2023,51(2):143−154.
|
[3] |
PEDRO M P S,SAMUEL C M,MERCEDES D G C,et al. Use of fly ash in the production of geopolymers:A literature review[J]. Innovative Infrastructure Solutions,2022,7(3):236. doi: 10.1007/s41062-022-00835-7
|
[4] |
FENG J W,ZHANG Z Y,GUAN W M,et al. Review of the backfill materials in Chinese underground coal mining[J]. Minerals,2023,13(4):473. doi: 10.3390/min13040473
|
[5] |
WANG Y M,HUANG Y C,HAO Y X. Experimental study and application of rheological properties of coal gangue-fly ash backfill slurry[J]. Processes,2020,8(3):284. doi: 10.3390/pr8030284
|
[6] |
杨科,赵新元,何祥,等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报,2022,47(12):4201−4216.
YANG Ke,ZHAO Xinyuan,HE Xiang,et al. Basic theory and key technology of multi-source coal-based solid waste for green backfilling[J]. Journal of China Coal Society,2022,47(12):4201−4216.
|
[7] |
ZHAO J H,YAN P Y,WANG D M. Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle[J]. Journal of Cleaner Production,2017,156:50−61. doi: 10.1016/j.jclepro.2017.04.029
|
[8] |
吴跃东,彭犇,吴龙,等. 国内外钢渣处理与资源化利用技术发展现状综述[J]. 环境工程,2021,39(1):161−165.
WU Yuedong,PENG Ben,WU Long,et al. Review on global development of treatment and utilization of steel slag[J]. Environmental Engineering,2021,39(1):161−165.
|
[9] |
宋文龙. 山西省绿色煤炭资源评价与分布特征研究[J]. 中国矿业,2021,30(8):62−68.
SONG Wenlong. Evaluation and distribution characteristics of green coal resources in Shanxi province[J]. China Mining Magazine,2021,30(8):62−68.
|
[10] |
吴海滨,姚茜,申远,等. “双碳” 背景下的山西省钢铁行业低碳发展路径[J]. 当代化工研究,2023(4):184−187.
WU Haibin,YAO Qian,SHEN Yuan,et al. Low-carbon development path of Shanxi’s steel industry under the background of double carbon[J]. Modern Chemical Research,2023(4):184−187.
|
[11] |
胡文,倪文,张静文. 高掺量钢渣无熟料体系制备全尾砂胶结充填料[J]. 金属矿山,2012(10):165−168.
HU Wen,NI Wen,ZHANG Jingwen. Preparation of whole-tailings paste backfilling material with high steel slag content and none clinker aggregate[J]. Metal Mine,2012(10):165−168.
|
[12] |
XIAO B L,HUANG H T,ZHANG J Y. A green sintering-free binder material with high-volumetric steel slag dosage for mine backfill[J]. Minerals,2022,12(8):1036. doi: 10.3390/min12081036
|
[13] |
董越,杨志强,高谦. 钢渣取代量对复合充填胶凝材料性能的影响[J]. 硅酸盐通报,2016,35(9):2967−2972,2979.
DONG Yue,YANG Zhiqiang,GAO Qian. Effect of steel slag substitution on the properties of composite cementitious backfill material[J]. Bulletin of the Chinese Ceramic Society,2016,35(9):2967−2972,2979.
|
[14] |
朱明,胡曙光,丁庆军. 钢渣用作水泥基材料的问题研讨[J]. 武汉理工大学学报,2005,27(6):48−51,65.
ZHU Ming,HU Shuguang,DING Qingjun. Investigation on applying steel slag to cementbased materials[J]. Journal of Wuhan University of Technology,2005,27(6):48−51,65.
|
[15] |
DAI X D,AYDIN S,YARDIMCI M Y,et al. Early age reaction,rheological properties and pore solution chemistry of NaOH-activated slag mixtures[J]. Cement and Concrete Composites,2022,133:104715. doi: 10.1016/j.cemconcomp.2022.104715
|
[16] |
刘奎生,段劲松,孙建伟. 不同碱性环境对转炉钢渣水化和微观结构的影响[J]. 电子显微学报,2021,40(6):687−694.
LIU Kuisheng,DUAN Jinsong,SUN Jianwei. Effect of different alkaline environment on the hydration and microstructure of converter steel slag[J]. Journal of Chinese Electron Microscopy Society,2021,40(6):687−694.
|
[17] |
LIU Z,ZHANG D W,LI L,et al. Microstructure and phase evolution of alkali-activated steel slag during early age[J]. Construction and Building Materials,2019,204:158−165. doi: 10.1016/j.conbuildmat.2019.01.213
|
[18] |
DUAN S Y,LIAO H Q,CHENG F Q,et al. Investigation into the synergistic effects in hydrated gelling systems containing fly ash,desulfurization gypsum and steel slag[J]. Construction and Building Materials,2018,187:1113−1120. doi: 10.1016/j.conbuildmat.2018.07.241
|
[19] |
MA F,ZHOU L Z,LUO Y,et al. The mechanism of pristine steel slag for boosted performance of fly ash-based geopolymers[J]. Journal of the Indian Chemical Society,2022,99(8):100602. doi: 10.1016/j.jics.2022.100602
|
[20] |
GUO X L,YANG J Y. Intrinsic properties and micro-crack characteristics of ultra-high toughness fly ash/steel slag based geopolymer[J]. Construction and Building Materials,2020,230:116965. doi: 10.1016/j.conbuildmat.2019.116965
|
[21] |
张西玲,郭海峰,汤子奇,等. 钢渣微粉−粉煤灰基地质聚合物性能研究及微观结构分析[J]. 硅酸盐通报,2021,40(12):4044−4051.
ZHANG Xiling,GUO Haifeng,TANG Ziqi,et al. Properties and microstructure of steel slag powder-fly ash based geopolymer[J]. Bulletin of the Chinese Ceramic Society,2021,40(12):4044−4051.
|
[22] |
吴其胜,李玉寿,李玉华. 复合碱组分对矿渣粉煤灰碱胶凝材料性能的影响[J]. 粉煤灰综合利用,2001,15(2):22−24.
WU Qisheng,LI Yushou,LI Yuhua. Influence of compound alkali on the performance of alkali activated cement with the slag and fly ash[J]. Fly Ash Comprehensive Utilization,2001,15(2):22−24.
|
[23] |
李晓磊,杜献杰,冯国瑞,等. 水泥–粉煤灰基矸石胶结充填体破坏特征及强度形成机制[J]. 煤炭科学技术,2024,52(5):36−45.
LI Xiaolei,DU Xianjie,FENG Guorui,et al. Failure characteristics and strength formation mechanism of cement-fly ash based cemented gangue backfill[J]. Coal Science and Technology,2024,52(5):36−45.
|
[24] |
冯国瑞,解文硕,郭育霞,等. 早期受载对矸石胶结充填体力学特性及损伤破坏的影响[J]. 岩石力学与工程学报,2022,41(4):775−784.
FENG Guorui,XIE Wenshuo,GUO Yuxia,et al. Effect of early load on mechanical properties and damage of cemented gangue backfill[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(4):775−784.
|
[25] |
WANG X X,GUO Y X,FENG G R,et al. Rheological and mechanical performance analysis and proportion optimization of cemented gangue backfill materials based on response surface methodology[J]. Environmental Science and Pollution Research International,2023,30(58):122482−122496. doi: 10.1007/s11356-023-30836-7
|
[26] |
HOU J W,CHEN Z M,LIU J X. Hydration activity and expansibility model for the RO phase in steel slag[J]. Metallurgical and Materials Transactions B,2020,51(4):1697−1704. doi: 10.1007/s11663-020-01847-3
|
[27] |
LIN Y,YI Y R,FANG M H,et al. Prediction model for SiO2 activity in the CaO−Al2O3−SiO2−MgO quaternary slag system[J]. Minerals,2023,13(4):509. doi: 10.3390/min13040509
|
[28] |
ZHONG J X,CAO L Y,LI M,et al. Mechanical properties and durability of alkali-activated steel slag–blastfurnace slag cement[J]. Journal of Iron and Steel Research International,2023,30(7):1342−1355. doi: 10.1007/s42243-023-01003-6
|
[29] |
马宏强,易成,陈宏宇,等. 碱激发煤矸石−矿渣胶凝材料的性能和胶结机理[J]. 材料研究学报,2018,32(12):898−904.
MA Hongqiang,YI Cheng,CHEN Hongyu,et al. Property and cementation mechanism of alkali-activated coal gangue-slag cementitious materials[J]. Chinese Journal of Materials Research,2018,32(12):898−904.
|
[30] |
KASHANI A,PROVIS J L,QIAO G G,et al. The interrelationship between surface chemistry and rheology in alkali activated slag paste[J]. Construction and Building Materials,2014,65:583−591. doi: 10.1016/j.conbuildmat.2014.04.127
|
[31] |
PANIAS D,GIANNOPOULOU I P,PERRAKI T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,301(1−3):246−254.
|
[32] |
CRIADO M,FERNÁNDEZ-JIMÉNEZ A,DE LA TORRE A G,et al. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash[J]. Cement and Concrete Research,2007,37(5):671−679. doi: 10.1016/j.cemconres.2007.01.013
|
[33] |
LIU J Y,YI C,ZHU H G,et al. Property comparison of alkali-activated carbon steel slag (CSS) and stainless steel slag (SSS) and role of blast furnace slag (BFS) chemical composition[J]. Materials,2019,12(20):3307. doi: 10.3390/ma12203307
|
[34] |
JOSEPH B,MATHEW G. Influence of aggregate content on the behavior of fly ash based geopolymer concrete[J]. Scientia Iranica,2012,19(5):1188−1194. doi: 10.1016/j.scient.2012.07.006
|
[35] |
邵春瑞,李俊清,赵宝友. 综放工作面过密集空巷群高水充填技术研究及应用[J]. 煤炭工程,2022,54(6):57−63.
SHAO Chunrui,LI Junqing,ZHAO Baoyou. High water filling technology for fully mechanized top-coal caving face crossing close-set abandoned roadway groups[J]. Coal Engineering,2022,54(6):57−63.
|
[36] |
王保勤. 古城煤矿膏体充填材料影响因素分析及配比优化[J]. 当代化工研究,2022(15):132−134.
WANG Baoqin. Analysis of influencing factors and ratio optimization of paste backfill material in Gucheng coal mine[J]. Modern Chemical Research,2022(15):132−134.
|
[37] |
杨军,张高展,丁庆军,等. 铝掺杂水化硅酸钙的分子结构和力学性能[J]. 建筑材料学报,2022,25(6):565−571,584.
YANG Jun,ZHANG Gaozhan,DING Qingjun,et al. Molecular structure and mechanical properties of aluminum substituted C−S−H[J]. Journal of Building Materials,2022,25(6):565−571,584.
|
[38] |
刘继中,赵庆新,张津瑞,等. 碱渣−矿渣复合胶凝材料硬化体的微观结构与组成[J]. 建筑材料学报,2019,22(6):872−877.
LIU Jizhong,ZHAO Qingxin,ZHANG Jinrui,et al. Microstructure and composition of hardened paste of soda residue-slag complex binding materials[J]. Journal of Building Materials,2019,22(6):872−877.
|
[39] |
柴石玉,张凌凯. 碱激发粉煤灰−钢渣粉协同固化膨胀土力学特性与微观机理研究[J]. 材料导报,2023,37(S1):269−276.
CHAI Shiyu,ZHANG Lingkai. Study on mechanical properties and microscopic mechanism of alkali-activated fly ash-steel slag powder co-curing expansive soil[J]. Materials Reports,2023,37(S1):269−276.
|
[40] |
查文华,李杰莲,吕文芳,等. 碱激发粉煤灰−矿渣基煤矸石透水混凝土制备及性能研究[J]. 铁道科学与工程学报,2025,22(4):1622−1634.
ZHA Wenhua,LI Jielian,LYU Wenfang,et al. Study on preparation and properties of alkali-activated fly ash-slag based coal gangue pervious concrete[J]. Journal of Railway Science and Engineering,2025,22(4):1622−1634.
|