Citation: | SUN Zhihui,WANG Yunbo,MA Shuxuan,et al. Energy storage modification of coal gangue and its application in high-specific-energy batteries[J]. Coal Science and Technology,2025,53(6):318−326. DOI: 10.12438/cst.2025-0196 |
The electrochemical energy storage utilization of coal gangue robustly supports the synergetic energy development of the coal mining industry, while addressing solid waste disposal issues, offering a forward-looking solution for the resourceful utilization of mining solid waste and the promotion of green and low-carbon mining. Through refined alkali activation and acid chemical modification techniques, this study innovatively transforming gangue waste into high-value-added energy storage materials and realizing their efficient application in the field of high-specific-energy batteries. The microstructure of modified coal gangue and original gangue was characterized in detail using techniques such as transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), aiming to reveal the modification mechanism in depth. Through single factor experimental methods, the differences in composition, crystal structure, and local electronic environment between raw coal gangue and modified coal gangue were analyzed in depth, and the optimal conditions for modified coal gangue in energy storage applications were determined. The results indicate that: After modification treatment, a layer of amorphous nano particle Al2O3 activation layer was formed on the surface of coal gangue, effectively reducing energy loss during the electrode reaction process; The surface of modified coal gangue is rich in highly active electrocatalytic sites such as oxygen-containing functional groups and oxygen vacancies, significantly reducing the activation energy of surface reactions. The modified coal gangue exhibits low overpotentials for charging and discharging (1.12 V), high discharge specific capacity (
[1] |
刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15.
LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
|
[2] |
王双明,刘浪,朱梦博,等. “双碳” 目标下煤炭绿色低碳发展新思路[J]. 煤炭学报,2024,49(1):152−171.
WANG Shuangming,LIU Lang,ZHU Mengbo,et al. New way for green and low-carbon development of coal industry under the target of “daul-carbon”[J]. Journal of China Coal Society,2024,49(1):152−171.
|
[3] |
周楠,姚依南,宋卫剑,等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报,2020,37(1):136−146.
ZHOU Nan,YAO Yinan,SONG Weijian,et al. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering,2020,37(1):136−146.
|
[4] |
中华人民共和国生态环境部. 中华人民共和国固体废物污染环境防治法[EB/OL]. [2025−01−16]. http://www.mee.gov.cn/ywgz/fgbz/fl/202004/t20200430_777580.shtml.
|
[5] |
国家发展改革委办公厅,工业和信息化部办公厅. 关于推进大宗固体废弃物综合利用产业集聚发展的通知[EB/OL]. [2025−01−16]. https://www.ndrc.gov.cn/fzggw/jgsj/hzs/sjdt/201901/t20190116_1130638.html.
|
[6] |
中华人民共和国全国人民代表大会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. [2025−01−16]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
|
[7] |
常纪文,杜根杰,杜建磊,等. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业,2022(8):13−17. doi: 10.3969/j.issn.1006-5377.2022.08.024
CHANG Jiwen,DU Genjie,DU Jianlei,et al. Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations[J]. China Environmental Protection Industry,2022(8):13−17. doi: 10.3969/j.issn.1006-5377.2022.08.024
|
[8] |
黄艳利,王文峰,卞正富. 新疆煤基固体废弃物处置与资源化利用研究[J]. 煤炭科学技术,2021,49(1):319−330.
HUANG Yanli,WANG Wenfeng,BIAN Zhengfu. Prospects of resource utilization and disposal of coal-based solid wastes in Xinjiang[J]. Coal Science and Technology,2021,49(1):319−330.
|
[9] |
林鹏程,杜美利,艾庆腾,等. 低钙煤矸石制备地聚合物的研究[J]. 应用化工,2021,50(3):641−644. doi: 10.3969/j.issn.1671-3206.2021.03.016
LIN Pengcheng,DU Meili,AI Qingteng,et al. Study on preparation of geopolymers from low calcium coal gangue[J]. Applied Chemical Industry,2021,50(3):641−644. doi: 10.3969/j.issn.1671-3206.2021.03.016
|
[10] |
QIU J S,ZHU M Y,ZHOU Y X,et al. Effect and mechanism of coal gangue concrete modification by fly ash[J]. Construction and Building Materials,2021,294:123563. doi: 10.1016/j.conbuildmat.2021.123563
|
[11] |
张凤娥,张坤. 改性煤矸石吸附废水中磷酸盐的研究[J]. 安全与环境学报,2021,21(6):2774−2780.
ZHANG Feng’e,ZHANG Kun. Study on modified coal gangue adsorbing phosphate in wastewater[J]. Journal of Safety and Environment,2021,21(6):2774−2780.
|
[12] |
JIN Y X,LIU Z,HAN L,et al. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions[J]. Journal of Hazardous Materials,2022,423:127027. doi: 10.1016/j.jhazmat.2021.127027
|
[13] |
张吉雄,巨峰,李猛,等. 煤矿矸石井下分选协同原位充填开采方法[J]. 煤炭学报,2020,45(1):131−140.
ZHANG Jixiong,JU Feng,LI Meng,et al. Method of coal gangue separation and coordinated in situ backfill mining[J]. Journal of China Coal Society,2020,45(1):131−140.
|
[14] |
HUANG P,ZHANG J X,ZHANG Q,et al. Nonlinear creep model of deep gangue backfilling material and time-dependent characteristics of roof deformation in backfilling mining[J]. Geofluids,2020,2020(1):8816871.
|
[15] |
康红普,王国法,王双明,等. 煤炭行业高质量发展研究[J]. 中国工程科学,2021,23(5):130−138. doi: 10.15302/J-SSCAE-2021.05.016
KANG Hongpu,WANG Guofa,WANG Shuangming,et al. High-quality development of China’s coal industry[J]. Strategic Study of CAE,2021,23(5):130−138. doi: 10.15302/J-SSCAE-2021.05.016
|
[16] |
SUN Z H,ZHOU N,LI M,et al. Functional control engineering of coal gangue electrocatalyst with amorphous SiCX/SiOX active layer loading enables efficient Li−O2 batteries[J]. Applied Sciences,2023,13(9):5551. doi: 10.3390/app13095551
|
[17] |
SUN Z H,ZHOU N,LI M,et al. Enhanced TiO2/SiCx active layer formed in situ on coal gangue/Ti3C2 MXene electrocatalyst as catalytic integrated units for efficient Li−O2 batteries[J]. Nanomaterials,2024,14(3):278. doi: 10.3390/nano14030278
|
[18] |
SUN Z H,HU Y J,ZENG K,et al. Turn “waste” into wealth:MoO2@coal gangue electrocatalyst with amorphous/crystalline heterostructure for efficient Li−O2 batteries[J]. Small,2023,19(27):2208145. doi: 10.1002/smll.202208145
|
[19] |
MA Y R,QU H Q,WANG W N,et al. Si/SiO2@Graphene superstructures for high-performance lithium-ion batteries[J]. Advanced Functional Materials,2023,33(8):2211648. doi: 10.1002/adfm.202211648
|
[20] |
ZHOU H B,ZHOU F,SHI S J,et al. Influence of working temperature on the electrochemical characteristics of Al2O3-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for Li-ion batteries[J]. Journal of Alloys and Compounds,2020,847:156412. doi: 10.1016/j.jallcom.2020.156412
|
[21] |
MA H R,YU Z R,CHEN J J,et al. Incorporating α-Al2O3 nanodots into expanded graphite anodes toward stable fast charging for lithium-ion batteries[J]. ACS Applied Energy Materials,2023,6(3):1389−1395. doi: 10.1021/acsaem.2c03251
|
[22] |
TIAN Y H,LIU X Z,XU L,et al. Engineering crystallinity and oxygen vacancies of co(II) oxide nanosheets for high performance and robust rechargeable Zn–air batteries[J]. Advanced Functional Materials,2021,31(20):2101239. doi: 10.1002/adfm.202101239
|
[23] |
CHEN X N,WANG X H,FANG D. A review on C1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes,Nanotubes and Carbon Nanostructures,2020,28(12):1048−1058. doi: 10.1080/1536383X.2020.1794851
|
[24] |
WAN W M,TACKETT B M,CHEN J G. Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces[J]. Chemical Society Reviews,2017,46(7):1807−1823. doi: 10.1039/C6CS00862C
|
[25] |
任世华,谢亚辰,焦小淼,等. 煤炭开发过程碳排放特征及碳中和发展的技术途径[J]. 工程科学与技术,2022,54(1):60−68.
REN Shihua,XIE Yachen,JIAO Xiaomiao,et al. Characteristics of carbon emissions during coal development and technical approaches for carbon neutral development[J]. Advanced Engineering Sciences,2022,54(1):60−68.
|
[26] |
谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.
XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
|