Advance Search
ZHU Weibing,ZHAO Bozhi,NING Shan,et al. Characterization methods and experimental study of mining-induced rock mass damage and fracture using carbon fiber similar materials[J]. Coal Science and Technology,2025,53(7):70−80. DOI: 10.12438/cst.2025-0176
Citation: ZHU Weibing,ZHAO Bozhi,NING Shan,et al. Characterization methods and experimental study of mining-induced rock mass damage and fracture using carbon fiber similar materials[J]. Coal Science and Technology,2025,53(7):70−80. DOI: 10.12438/cst.2025-0176

Characterization methods and experimental study of mining-induced rock mass damage and fracture using carbon fiber similar materials

More Information
  • Received Date: February 10, 2025
  • Available Online: June 29, 2025
  • Simulation experiments are a crucial method for investigating overburden failure, strata movement, and strata control during coal mining. However, traditional similar materials struggle to effectively monitor the internal damage, fracturing, and dynamic development processes within the strata during mining. To address this issue, carbon fibers were introduced into the field of similar material simulation experiments for mining. Leveraging the sensitive feedback of resistivity changes in response to damage of this composite material, This enabled real-time monitoring of internal damage and fracture patterns within the mining strata during similar simulation experiments, leading to the development of a carbon fiber similar simulation composite material with damage self-sensing properties. The study found that as the carbon fiber content increased, the evolution patterns of the electrical resistance change rate and the damage coefficient of the similar material tended to coincide. When the carbon fiber content in the similar material exceeded 2%, the electrical resistance change rate and the damage coefficient consistently exhibited synchronized growth with essentially identical increments. Based on this, the correlation between the variation of resistivity in carbon fiber similar simulation materials and the degree of rock layer damage was investigated. Dynamic evolution experiments of the rock structure in close proximity to coal pillar extraction were conducted, focusing on the physical simulation of the timing of key layer fractures. The characteristics of resistivity changes in carbon fiber similar materials throughout the coal mining process were analyzed, enabling precise identification of the development extent, distribution range, and fracture timing of the overburden mining-induced cracks. This research established a novel quantitative and characterization method for the dynamic process of rock layer damage and fracturing applicable in mining engineering simulation experiments. It provides a scientific basis for revealing the evolution of damage and fracture in mining-induced strata and for optimizing rock layer control technologies.

  • [1]
    钱鸣高,许家林,王家臣,等. 矿山压力与岩层控制[M]. 3版. 徐州:中国矿业大学出版社,2021.
    [2]
    杨胜利,王家臣,杨敬虎. 顶板动载冲击效应的相似模拟及理论解析[J]. 煤炭学报,2017,42(2):335−343.

    YANG Shengli,WANG Jiachen,YANG Jinghu. Physical analog simulation analysis and its mechanical explanation on dynamic load impact[J]. Journal of China Coal Society,2017,42(2):335−343.
    [3]
    娄金福. 大比尺采场模型试验液压支架模拟系统研究及应用[J]. 煤炭科学技术,2018,46(5):67−73,80.

    LOU Jinfu. Research and application of hydraulic support simulation system for large-scale working face physical modeling experiment[J]. Coal Science and Technology,2018,46(5):67−73,80.
    [4]
    解盘石,杨航,伍永平,等. 基于数字孪生的倾斜采场装备力学行为测控研究[J]. 煤炭科学技术,2024,52(12):259−271. doi: 10.12438/cst.2024-0011

    XIE Panshi,YANG Hang,WU Yongping,et al. Investigation into the monitoring and control of mechanical dynamics in inclined mining equipment utilizing digital twin technology[J]. Coal Science and Technology,2024,52(12):259−271. doi: 10.12438/cst.2024-0011
    [5]
    朱卫兵,于斌,鞠金峰,等. 采场顶板关键层“横U-Y” 型周期破断特征的试验研究[J]. 煤炭科学技术,2020,48(2):36−43.

    ZHU Weibing,YU Bin,JU Jinfeng,et al. Experimental study on “horizontal U-Y” periodical breakage characteristics of key strata in stope roof[J]. Coal Science and Technology,2020,48(2):36−43.
    [6]
    王家臣,杨胜利,杨宝贵,等. 长壁矸石充填开采上覆岩层移动特征模拟实验[J]. 煤炭学报,2012,37(8):1256−1262.

    WANG Jiachen,YANG Shengli,YANG Baogui,et al. Simulation experiment of overlying strata movement features of longwall with gangue backfill mining[J]. Journal of China Coal Society,2012,37(8):1256−1262.
    [7]
    伍永平,杜玉乾,解盘石,等. 大倾角煤层伪俯斜工作面平行四边形液压支架结构设计与运动响应[J]. 煤炭科学技术,2024,52(4):314−325. doi: 10.12438/cst.2023-1437

    WU Yongping,DU Yuqian,XIE Panshi,et al. Structural design and motion response of parallelogram hydraulic support in pitching oblique mining face of steeply dipping coal seam[J]. Coal Science and Technology,2024,52(4):314−325. doi: 10.12438/cst.2023-1437
    [8]
    王红伟,伍永平,曹沛沛,等. 大倾角煤层开采大型三维可加载相似模拟试验[J]. 煤炭学报,2015,40(7):1505−1511.

    WANG Hongwei,WU Yongping,CAO Peipei,et al. Large scale loadable 3D-simulation tests on mining steeply dipping seam[J]. Journal of China Coal Society,2015,40(7):1505−1511.
    [9]
    魏世明,马智勇,李宝富,等. 围岩三维应力光栅监测方法及相似模拟实验研究[J]. 采矿与安全工程学报,2015,32(1):138−143.

    WEI Shiming,MA Zhiyong,LI Baofu,et al. Study on the monitoring method of three-dimensional stress with FBG in surrounding rock and the simulation experiment[J]. Journal of Mining & Safety Engineering,2015,32(1):138−143.
    [10]
    柴敬,赵文华,李毅,等. 采场上覆岩层沉降变形的光纤检测实验[J]. 煤炭学报,2013,38(1):55−60.

    CHAI Jing,ZHAO Wenhua,LI Yi,et al. FBG monitoring test on settlement deformation of overlaying strata in similar models[J]. Journal of China Coal Society,2013,38(1):55−60.
    [11]
    来兴平,张旭东,单鹏飞,等. 厚松散层下三软煤层开采覆岩导水裂隙发育规律[J]. 岩石力学与工程学报,2021,40(9):1739−1750.

    LAI Xingping,ZHANG Xudong,SHAN Pengfei,et al. Study on development law of water-conducting fractures in overlying strata of three soft coal seam mining under thick loose layers[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1739−1750.
    [12]
    林海飞,刘思博,双海清,等. 沿空留巷开采覆岩裂隙演化规律及卸压瓦斯抽采技术[J]. 采矿与岩层控制工程学报,2024,6(1):52−64.

    LIN Haifei,LIU Sibo,SHUANG Haiqing,et al. Overburden rock fracture evolution law and pressure relief gas extraction technology of gob-side entry retaining mining[J]. Journal of Mining and Strata Control Engineering,2024,6(1):52−64.
    [13]
    王婉洁,高富强. 工作面覆岩采动裂隙演化规律物理及数值模拟研究[J]. 采矿与岩层控制工程学报,2023,5(2):17−26.

    WANG Wanjie,GAO Fuqiang. Study of the evolution of mining-induced fractures with longwall face proceeds-insight from physical and numerical modeling[J]. Journal of Mining and Strata Control Engineering,2023,5(2):17−26.
    [14]
    王炯,朱道勇,宫伟力,等. 切顶卸压自动成巷岩层运动规律物理模拟实验[J]. 岩石力学与工程学报,2018,37(11):2536−2547.

    WANG Jiong,ZHU Daoyong,GONG Weili,et al. Physical simulation experiment on the movement of rock strata upon automatic roadway forming by roof cutting and pressure releasing[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2536−2547.
    [15]
    崔峰,杨彦斌,来兴平,等. 基于微震监测关键层破断诱发冲击地压的物理相似材料模拟实验研究[J]. 岩石力学与工程学报,2019,38(4):803−814.

    CUI Feng,YANG Yanbin,LAI Xingping,et al. Similar material simulation experimental study on rockbursts induced by key stratum breaking based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):803−814.
    [16]
    苗磊刚,石必明,穆朝民,等. 大采高采动覆岩变形的相似模拟试验研究[J]. 中国安全科学学报,2016,26(1):116−121.

    MIAO Leigang,SHI Biming,MU Chaomin,et al. Similar material simulation study on deformation behavior of overlying strata in great mining height face[J]. China Safety Science Journal,2016,26(1):116−121.
    [17]
    贾栋,姜德义,陈结,等. 综放工作面覆岩破坏特征及裂隙演化相似模拟试验研究[J]. 中国安全生产科学技术,2022,18(3):19−25.

    JIA Dong,JIANG Deyi,CHEN Jie,et al. Similar simulation study on failure characteristics and fracture evolution of overlying strata in fully-mechanized caving face[J]. Journal of Safety Science and Technology,2022,18(3):19−25.
    [18]
    DINESH A,SUJI D,PICHUMANI M. Real-time implication of hybrid carbonaceous fibre and powder integrated self-sensing cement composite in health monitoring of beams and columns[J]. European Journal of Environmental and Civil Engineering,2023,27(16):4563−4580. doi: 10.1080/19648189.2023.2194939
    [19]
    李惠,欧进萍. 智能混凝土与结构[J]. 工程力学,2007,24(S2):45−61.

    LI Hui,OU Jinping. Smart concrete and structures[J]. Engineering Mechanics,2007,24(S2):45−61.
    [20]
    HAN B G,YU X,OU J P. Self-sensing concrete in smart structures[M]. Amsterdam:Elsevier,2015
    [21]
    HAN B G,ZHANG L Q,OU J P. Smart and multifunctional concrete toward sustainable infrastructures[M]. Cham:Springer Nature Singapore,2017.
    [22]
    晏楚. 结构型纤维对智能混凝土裂缝自监测性能的研究[D]. 大连:大连理工大学,2022.

    YAN Chu. Effect of hybrid fiber and nano carbon black on the self-sensing ability of crack for smart concrete Dalian:Dalian University of Technology,2022.
    [23]
    宁杉. 非均厚“弓形” 巨厚关键层破裂演化及孕灾机理研究[D]. 徐州:中国矿业大学,2023.

    NING Shan. Research on the Evolution of Fracture and Disaster Incubation Mechanisms in Ununiform "Bow-shaped" Ultra-thick Key Stratum. Xuzhou:China University of MINING and Technology. Xuzhou:China University of Mining and Technology,2023.
    [24]
    WANG C, JIAO G S, LI B L, et al. Dispersion of carbon fibers and conductivity of carbon fiber-reinforced cement-based composites[J]. Ceramics International,2017,43(17):15122−15132. doi: 10.1016/j.ceramint.2017.08.041
    [25]
    柳根金. 混掺纤维与纳米炭黑对智能混凝土裂缝自感知性能的影响[D]. 大连:大连理工大学,2021.

    LIU Genjin. Effect of hybrid fiber and nano carbon black on the self-sensing ability of crack for smart concrete. Dalian:Dalian University of Technology. Dalian:Dalian University of Technology,2021.
    [26]
    CHU H Y,CHEN J K. The experimental study on the correlation of resistivity and damage for conductive concrete[J]. Cement and Concrete Composites,2016,67:12−19. doi: 10.1016/j.cemconcomp.2015.12.005
    [27]
    DING S Q,DONG S F,ASHOUR A,et al. Development of sensing concrete:Principles,properties and its applications[J]. Journal of Applied Physics,2019,126(24):241101. doi: 10.1063/1.5128242
    [28]
    HAN B G,GUAN X C,OU J P. Electrode design,measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors[J]. Sensors and Actuators A:Physical,2007,135(2):360−369. doi: 10.1016/j.sna.2006.08.003
    [29]
    丁思齐,韩宝国,欧进萍. 本征自感知混凝土及其智能结构[J]. 工程力学,2022,39(3):1−10. doi: 10.6052/j.issn.1000-4750.2021.06.ST02

    DING Siqi,HAN Baoguo,OU Jinping. Intrinsic self-sensing concrete for smart structures[J]. Engineering Mechanics,2022,39(3):1−10. doi: 10.6052/j.issn.1000-4750.2021.06.ST02
    [30]
    WANG Y L,WANG Y S,WAN B L,et al. Properties and mechanisms of self-sensing carbon nanofibers/epoxy composites for structural health monitoring[J]. Composite Structures,2018,200:669−678. doi: 10.1016/j.compstruct.2018.05.151
    [31]
    BORKE BIRGIN H,D’ALESSANDRO A,FAVARO M,et al. Field investigation of novel self-sensing asphalt pavement for weigh-in-motion sensing[J]. Smart Materials and Structures,2022,31(8):085004. doi: 10.1088/1361-665X/ac7922
    [32]
    韩宝国,丁思齐,董素芬,等. 本征自感知混凝土在高铁土建基础设施原位监测中的应用展望[J]. 中国铁路,2019(11):68−76.

    HAN Baoguo,DING Siqi,DONG Sufen,et al. Prospects on applications of intrinsic self-sensing concrete in infrastructures in situ monitoring for high speed railway civil engineering[J]. China Railway,2019(11):68−76.
    [33]
    欧进萍. 重大工程结构智能传感网络与健康监测系统的研究与应用[J]. 中国科学基金,2005,19(1):8−12. doi: 10.3969/j.issn.1000-8217.2005.01.002

    OU Jinping. Research and practice of smart sensor networks and health monitoring systems for civil infrastructures in China’s mainland[J]. Bulletin of National Science Foundation of China,2005,19(1):8−12. doi: 10.3969/j.issn.1000-8217.2005.01.002
    [34]
    徐敬民,朱卫兵,鞠金峰. 浅埋房采区下近距离煤层开采动载矿压机理[J]. 煤炭学报,2017,42(2):500−509.

    XU Jingmin,ZHU Weibing,JU Jinfeng. Mechanism of dynamic mine pressure occurring below adjacent upper chamber mining goaf with shallow cover depth[J]. Journal of China Coal Society,2017,42(2):500−509.
    [35]
    WANG H F,YAN H D,MEI Z. Effect of HPMC on the piezoresistivity of smart concrete aggregate with Z shape[J]. Journal of Wuhan University of Technology-Mater Sci Ed,2020,35(4):768−777. doi: 10.1007/s11595-020-2319-0
    [36]
    赵奎,冉珊瑚,曾鹏,等. 含水率对红砂岩特征应力及声发射特性的影响[J]. 岩土力学,2021,42(4):899−908.

    ZHAO Kui,RAN Shanhu,ZENG Peng,et al. Effect of moisture content on characteristic stress and acoustic emission characteristics of red sandstone[J]. Rock and Soil Mechanics,2021,42(4):899−908.
    [37]
    鞠金峰,许家林,朱卫兵,等. 近距离煤层工作面出倾向煤柱动载矿压机理研究[J]. 煤炭学报,2010,35(1):15−20.

    JU Jinfeng,XU Jialin,ZHU Weibing,et al. Mechanism of strong strata behaviors during the working face out of the upper dip coal pillar in contiguous seams[J]. Journal of China Coal Society,2010,35(1):15−20.
    [38]
    朱卫兵,许家林,鞠金峰. 浅埋煤层开采压架机理及防治[M]. 北京:科学出版社,2022.
    [39]
    鞠杨,任张瑜,郑江韬,等. 岩石灾变非连续结构与多物理场效应的透明解析与透明推演[J]. 煤炭学报,2022,47(1):210−232.

    JU Yang,REN Zhangyu,ZHENG Jiangtao,et al. Transparentized solutions and interpretation for the effects of discontinuous structures and multiphysics on rock failure[J]. Journal of China Coal Society,2022,47(1):210−232.
  • Related Articles

    [1]ZHANG Yujun, LI Youwei, XIAO Jie, ZHANG Zhiwei, LI Jiawei. Pre-splitting weakening failure characteristics of hard overburden and height control mechanism of water-conducting fracture zone[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 105-118. DOI: 10.12438/cst.2023-1618
    [2]WU Yongping, LANG Ding, YUN Dongfeng, XIE Panshi, WANG Hongwei, GAO Xicai, LUO Shenghu, ZENG Youfu, LYU Wenyu, ZHANG Yanli, HU Bosheng, HUANGFU Jingyu, ZHOU Bangyuan, HUANG Guochun, WANG Li, LI Junming, LIU Bin. Reform and prospects of mining technology for large inclined coal seam in China[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(1): 25-51. DOI: 10.12438/cst.2023-1601
    [3]WANG Jiachen, XU Jialin, YANG Shengli, WANG Zhaohui. Development of strata movement and its control in underground mining: In memory of 40 years of Voussoir Beam Theory proposed by Academician Minggao Qian[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 80-94. DOI: 10.13199/j.cnki.cst.2022-2071
    [4]KANG Hongpu, FENG Yanjun, ZHANG Zhen, ZHAO Kaikai, WANG Peng. Hydraulic fracturing technology with directional boreholes for strata control in underground coal mines and its application[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 31-44. DOI: 10.13199/j.cnki.cst.2022-2004
    [5]ZHANG Yujun, ZHANG Zhiwei. Research status and development trend of mining overburden failurelaw and control technology[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(11): 85-97.
    [6]WANG Feng, CHEN Shaojie, XU Jialin, MA Bo, DING Xiyang, LIU Zunxin. Research on ground control based on arch structure in unconsolidated layers theory[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(9): 130-138.
    [7]XU Guosheng, GUAN Jinfeng, LI Huigui, WANG Hongbo. Modeling methods and verification of rock strata movement in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (5).
    [8]Sun Xikui Li Xiushan Shi Xianyuan Chang Qingliang Li Xiangyang, . Study on mine strata behavior with full backfill effect of paste backfill in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (1).
    [9]Kang Hongpu Feng Yanjun, . Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (1).
    [10]KANG Hong-pu. Stress Distribution Characteristics and Strata Control Technology for Roadways in Deep Coal Mines[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).

Catalog

    Article views (50) PDF downloads (21) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return