Advance Search
GUO Qiang,ZHANG Jixiong,HUO Binbin,et al. Hydration mechanism and carbon footprint of formic acid modified coal gasification slag-based backfill material[J]. Coal Science and Technology,2025,53(6):224−235. DOI: 10.12438/cst.2025-0158
Citation: GUO Qiang,ZHANG Jixiong,HUO Binbin,et al. Hydration mechanism and carbon footprint of formic acid modified coal gasification slag-based backfill material[J]. Coal Science and Technology,2025,53(6):224−235. DOI: 10.12438/cst.2025-0158

Hydration mechanism and carbon footprint of formic acid modified coal gasification slag-based backfill material

More Information
  • Received Date: February 06, 2025
  • Available Online: June 13, 2025
  • The application of coal gasification slag (CGS) as backfill materials is hindered owing to its low hydration reactivity which results in insufficient strength performance of cementitious materials. This investigation applied formic acid to modify the surface of CGS in order to enhance the reactivity of CGS, and the mechanical properties, hydration mechanisms and carbon footprint of the formic acid modified CGS-based backfill material (FCM) were further investigated. The results show that after formic acid modification, part of the calcium carbonate and anorthite in CGS react with formic acid to form calcium formate, producing in-situ pores on the surface of CGS particles. The optimal formic acid dosage is 4% of CGS. At this dosage, the specific surface area of CGS particles increases from 6.32 m2/g to 9.35 m2/g, and the total pore volume increases from 0.034 2 cm3/g to 0.040 1 cm3/g. Consequently, the 3 d and 7 d compressive strengths of FCM are nearly doubled, and the cumulative hydration heat at 72 h reaches a maximum value of 81.08 J/g. However, further increasing formic acid dosage decreases the hydration activity of CGS and mechanical properties of FCM, owing to the additional reaction products covering the CGS particle surfaces, resulting in the bridging and agglomeration of CGS particles, which hindered water molecules in FCM from penetrating the particles. Additionally, the carbon life cycle assessment revealed that substituting cement with 4% formic acid modified CGS reduced the total CO2 emissions of FCM by 376.16 kg/t compared to that of the reference group, significantly lowering the carbon emissions and achieving carbon reduction targets.

  • [1]
    谢克昌. 新型能源体系发展背景下煤炭清洁高效转化的挑战及途径[J]. 煤炭学报,2024,49(1):47−56.

    XIE Kechang. Develop new energy system and promote clean and efficient conversion of coal[J]. Journal of China Coal Society,2024,49(1):47−56.
    [2]
    葛世荣,刘淑琴,樊静丽,等. 低碳化现代煤基能源开发关键技术体系[J]. 煤炭学报,2024,49(7):2949−2972.

    GE Shirong,LIU Shuqin,FAN Jingli,et al. Key technologies for low-carbon modern coal-based energy[J]. Journal of China Coal Society,2024,49(7):2949−2972.
    [3]
    中国石化新闻网. 煤化工业务高质量发展之路[EB/OL]. (2024−09−04). http://www.sinopecnews.com.cn/xnews/content/2024-09/04/content_7105053.html

    Sinopec News Network. The path to the high-quality development of the coal chemical industry business[EB/OL]. (2024−09−04). http://www.sinopecnews.com.cn/xnews/content/2024-09/04/content_7105053.html
    [4]
    徐婕,史江维,韩信有,等. 煤制芳烃技术研究进展[J]. 煤炭转化,2024,47(5):103−118.

    XU Jie,SHI Jiangwei,HAN Xinyou,et al. Research progress of coal-to-aromatics technology[J]. Coal Conversion,2024,47(5):103−118.
    [5]
    孙益,郭啸晋,徐祥. 耦合绿电煤气化生产化学品过程CO2减排潜力[J]. 洁净煤技术,2024,30(4):111−119.

    SUN Yi,GUO Xiaojin,XU Xiang. Potential of CO2 emission reduction of coal gasification combined with green electricity[J]. Clean Coal Technology,2024,30(4):111−119.
    [6]
    屈慧升,索永录,刘浪,等. 改性煤气化渣基矿用充填材料制备与性能[J]. 煤炭学报,2022,47(5):1958−1973.

    QU Huisheng,SUO Yonglu,LIU Lang,et al. Preparation and properties of modified coal gasification slag-based filling materials for mines[J]. Journal of China Coal Society,2022,47(5):1958−1973.
    [7]
    宋瑞领,蓝天. 气流床煤气化炉渣特性及综合利用研究进展[J]. 煤炭科学技术,2021,49(4):227−236.

    SONG Ruiling,LAN Tian. Review on characteristics and utilization of entrained-flow coal gasification residue[J]. Coal Science and Technology,2021,49(4):227−236.
    [8]
    张凯,李晓楠,暴凯凯,等. 西北干旱露天煤矿排土场土壤重构与水盐运移机制[J]. 煤炭学报,2024,49(3):1556−1569.

    ZHANG Kai,LI Xiaonan,BAO Kaikai,et al. Soil reconstruction and water-salt transport mechanism of waste dump in arid open-pit coal mine in Northwest China[J]. Journal of China Coal Society,2024,49(3):1556−1569.
    [9]
    廖昌建,王晶,金平,等. 煤气化渣理化特性及其所含重金属迁移规律综述[J]. 煤炭科学技术,2025,53(2):426−443.

    LIAO Changjian,WANG Jing,JIN Ping,et al. Review of physical and chemical characteristics and heavy metal migration rules of coal gasification slag[J]. Coal Science and Technology,2025,53(2):426−443.
    [10]
    陈肖役,韩瑞,张宁宁,等. 煤气化渣中有害重金属元素的赋存特征及其风险评估[J/OL]. 洁净煤技术,2024:1−12. [2024−11−6]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JJMS20241105001&dbname=CJFD&dbcode=CJFQ.

    CHEN Xiaoyi,HAN Rui,ZHANG Ningning,et al. Occurrence characteristics and risk assessment of harmful heavy metals in coal gasification slag[J/OL]. Clean Coal Technology,2024:1−12. [2024−11−6]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JJMS20241105001&dbname=CJFD&dbcode=CJFQ.
    [11]
    郭旸. 宁东煤气化细渣残碳富集及氧化/活化过程中重金属迁移与演化机理[D]. 徐州:中国矿业大学,2023.

    GUO Yang. Migration and evolution mechanisms for heavy metals during residual carbon enrichment and oxidation/activation processes of ningdong coal gasification fine slag[D]. Xuzhou:China University of Mining and Technology,2023.
    [12]
    刘艳丽,李强,陈占飞,等. 煤气化渣特性分析及综合利用研究进展[J]. 煤炭科学技术,2022,50(11):251−257.

    LIU Yanli,LI Qiang,CHEN Zhanfei,et al. Research progress characteristics analysis and comprehensive utilization of coal gasification slag[J]. Coal Science and Technology,2022,50(11):251−257.
    [13]
    许云龙,周长俊,刘晓敏,等. 路用煤气化渣混凝土的制备与微观结构[J]. 煤炭学报,2024,49(S1):424−433.

    XU Yunlong,ZHOU Changjun,LIU Xiaomin,et al. Preparation and microstructure of coal gasification slag concrete for road construction[J]. Journal of China Coal Society,2024,49(S1):424−433.
    [14]
    樊盼盼,樊晓婷,杨进进,等. 气流床煤气化细渣分级浮选及EDLVO理论分析[J]. 化工进展,2024,43(11):6475−6482.

    FAN Panpan,FAN Xiaoting,YANG Jinjin,et al. Graded flotation of entrained-flow coal gasification fine slag and EDLVO analysis[J]. Chemical Industry and Engineering Progress,2024,43(11):6475−6482.
    [15]
    吴锦文,邓小伟,焦飞硕,等. 煤基灰/渣的大宗固废资源化利用现状及发展趋势[J]. 煤炭科学技术,2024,52(6):238−252.

    WU Jinwen,DENG Xiaowei,JIAO Feishuo,et al. Resource utilization status and development trend of bulk solid waste of coal-based ash/slag[J]. Coal Science and Technology,2024,52(6):238−252.
    [16]
    李宇,王建敏,张弦,等. 高附加值煤气化渣基材料开发研究进展[J]. 材料导报,2023,37(23):94−105.

    LI Yu,WANG Jianmin,ZHANG Xian,et al. Research progress on the development of high-value-added materials by using coal gasification slag[J]. Materials Reports,2023,37(23):94−105.
    [17]
    高海洋,梁龙,靳开宇,等. 煤气化渣资源化利用综述[J]. 煤炭科学技术,2024,52(8):192−208.

    GAO Haiyang,LIANG Long,JIN Kaiyu,et al. Review on resource utilization of coal gasification slag[J]. Coal Science and Technology,2024,52(8):192−208.
    [18]
    窦占双,魏力,王梦梦,等. 煤气化渣替代矿渣制备超硫酸盐水泥的可行性研究[J]. 硅酸盐通报,2024,43(8):2952−2960.

    DOU Zhanshuang,WEI Li,WANG Mengmeng,et al. Feasibility study on using coal gasification slag as a substitute for blast furnace slag to prepare super sulphated cement[J]. Bulletin of the Chinese Ceramic Society,2024,43(8):2952−2960.
    [19]
    席雅允,沈玉,刘娟红,等. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报,2021,35(S2):262−267,274.

    XI Yayun,SHEN Yu,LIU Juanhong,et al. Influence mechanism of chemical excitation on compressive strength of slag cement system in coal gasification[J]. Materials Reports,2021,35(S2):262−267,274.
    [20]
    吴平川,刘治兵,黄天勇,等. 煤气化渣胶凝活性激发及机理研究进展[J/OL]. 材料导报,2024:1−19. [2024−8−5]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20240730002&dbname=CJFD&dbcode=CJFQ.

    WU Pingchuan,LIU Zhibing,HUANG Tianyong,et al. Research progress on excitation and mechanism of coal gasifica- tion slag cementitious reactivity[J/OL]. Materials Reports,2024:1−19. [2024−8−5]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20240730002&dbname=CJFD&dbcode=CJFQ.
    [21]
    孙雅娟,段思宇,张宏,等. 化学外加剂对固废基胶凝材料性能及水化行为的影响[J]. 化工进展,2025,44(3):1739−1748.

    SUN Yajuan,DUAN Siyu,ZHANG Hong,et al. Effects of chemical admixtures on properties and hydration behaviors of solid waste based cementitious materials[J]. Chemical Industry and Engineering Progress,2025,44(3):1739−1748.
    [22]
    王学斌,于伟,张韬,等. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术,2021,27(3):61−69.

    WANG Xuebin,YU Wei,ZHANG Tao,et al. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technology,2021,27(3):61−69.
    [23]
    YANG P,SUO Y L,LIU L,et al. Study on the curing mechanism of cemented backfill materials prepared from sodium sulfate modified coal gasification slag[J]. Journal of Building Engineering,2022,62:105318. doi: 10.1016/j.jobe.2022.105318
    [24]
    胡维扬,郭育霞,白晨阳,等. 物化耦合激发煤气化渣活性研究[J]. 矿业研究与开发,2024,44(11):283−290.

    HU Weiyang,GUO Yuxia,BAI Chenyang,et al. Research on activation of coal gasification slag with physical and chemical coupling excitation[J]. Mining Research and Development,2024,44(11):283−290.
    [25]
    李肽脂,吴锋,李辉,等. 复合激发煤气化渣基胶凝材料的制备[J]. 环境工程学报,2022,16(7):2356−2364.

    LI Taizhi,WU Feng,LI Hui,et al. Preparation of composite activated coal gasification slag-based cementitious materials[J]. Chinese Journal of Environmental Engineering,2022,16(7):2356−2364.
    [26]
    房奎圳. 煤气化渣结构、活性与反应机理及其复合胶凝材料性能[D]. 北京:中国矿业大学(北京),2023.

    FANG Kuizhen. Structure,activity and reaction mechanism of coal gasification slag and its performance as a composite cementitious material[D]. Beijing:China University of Mining & Technology,Beijing,2023.
    [27]
    XIE G,LIU L,SUO Y L,et al. Hydration mechanism of calcium chloride modified coal gasification slag-based backfill materials[J]. Process Safety and Environmental Protection,2024,182:127−138. doi: 10.1016/j.psep.2023.12.001
    [28]
    XIANG J C,QIU J P,ZHAO Y Q,et al. Rheology,mechanical properties,and hydration of synergistically activated coal gasification slag with three typical solid wastes[J]. Cement and Concrete Composites,2024,147:105418. doi: 10.1016/j.cemconcomp.2023.105418
    [29]
    霍彬彬,李保亮,陈春,等. 冰乙酸干法化学改性钢渣粉机理及其性能[J]. 硅酸盐学报,2021,49(5):948−954.

    HUO Binbin,LI Baoliang,CHEN Chun,et al. Mechanism and properties of glacial acetic acid modified steel slag powder via dry chemical modification method[J]. Journal of the Chinese Ceramic Society,2021,49(5):948−954.
    [30]
    国家市场监督管理总局,国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法):GB/T 17671—2021[S]. 北京:中国标准出版社,2021.
    [31]
    GUO Q,HUO B B,YU K P,et al. Using acetic acid as a preconditioner to optimize rheology of alkali-activated coal gasification slag based backfill pastes[J]. Minerals Engineering,2024,218:109040. doi: 10.1016/j.mineng.2024.109040
    [32]
    沈玲玲,丁鹿玮,张羽者,等. 面向残煤复采的煤泥基注浆充填材料机械活化机理研究[J]. 采矿与安全工程学报,2023,40(6):1243−1252.

    SHEN Lingling,DING Luwei,ZHANG Yuzhe,et al. Research on the mechanical activation mechanism of coal slime based grouting filling materials for residual coal remining[J]. Journal of Mining & Safety Engineering,2023,40(6):1243−1252.
    [33]
    HUO B B,ZHANG J X,LI M,et al. Predicting mechanical development of mine functional mortar:Experiment and thermodynamic analysis[J]. Journal of Materials Research and Technology,2023,23:967−975. doi: 10.1016/j.jmrt.2023.01.056
    [34]
    MANNINGER T,JANSEN D,NEUBAUER J,et al. The retarding effect of phosphoric acid during CAC hydration[J]. Cement and Concrete Research,2019,122:83−92. doi: 10.1016/j.cemconres.2019.04.020
    [35]
    GUO X L,LI Y X,SHI H S,et al. Carbon reduction in cement industry - An indigenized questionnaire on environmental impacts and key parameters of life cycle assessment (LCA) in China[J]. Journal of Cleaner Production,2023,426:139022. doi: 10.1016/j.jclepro.2023.139022
    [36]
    霍彬彬,张吉雄,周楠,等. 十二烷基硫酸钠对碱激发煤气化渣充填料浆封存CO2及流变性能的影响[J]. 采矿与安全工程学报,2024,41(6):1279−1288.

    HUO Binbin,ZHANG Jixiong,ZHOU Nan,et al. Effect of sodium dodecyl sulfate on the CO2 sequestration and rheological properties of alkali-activated coal gasification slag backfill pastes[J]. Journal of Mining & Safety Engineering,2024,41(6):1279−1288.
  • Related Articles

    [1]LI Quansheng, LI Lin, FANG Jie, GUO Junting, LI Jun, XU Zhuhe, LI Xiaobin. Ecological protection coal mining technology system and engineering practice[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 28-37. DOI: 10.12438/cst.2023-1962
    [2]LI Quansheng, LI Lin. Technology and application of damage reduction mining and ecosystem restoration of open-pit coal mines in eastern grassland area[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 484-492. DOI: 10.13199/j.cnki.cst.2022-1766
    [3]WANG Jiaqi, LU Mingyin, WANG Qingxiong, WANG Xufeng, LI Xiangong, ZHAI Wenrui. Study on ecological environment assessment of water conservation mining based on entropy weight method and cloud model[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 291-298.
    [4]YAO Qiangling, TANG Chuanjin, LIU Zichang. Analysis of coal and water co-mining in ecologically fragile mining areas in Western China[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(12): 225-232.
    [5]LIU Xiaomin, WANG Wenjuan, WANG Zhenyu, CHEN Qiong. Evaluation of coal water coordinated green mining degree in ecologically fragile area based on GT-ANP theory[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(8): 203-210.
    [6]WANG Shuangming, HOU Enke, XIE Xiaoshen, YANG Fan, LIU Ying, XIAO Xucai, SHI Zengwu, HUANG Yongan, YANG Zheng, XIE Yongli. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 19-31. DOI: 10.13199/j.cnki.cst.2021.01.003
    [7]YANG Junzhe. Comprehensive treatment technology of ecological environment above and underground in Shendong mining area[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(9): 56-65.
    [8]HU Haifeng, LIAN Xugang, CAI Yinfei, ZHANG Kai. Study on ecological environment damage and restoration for coal mining-subsided area in loess hilly area of Shanxi Province[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(4).
    [9]HU Zhenqi, XIAO Wu. Some thoughts on green development strategy of coal industry:from aspects of ecological restoration[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(4).
    [10]SONG Ziling, ZHAO Dongyang, ZHANG Yuhang, JIA Zhengzhao, FAN Junfu, WANG Ronghai. Study on evaluation model and application of green mining ecological environment evaluation system in open-pit coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10).

Catalog

    Article views (41) PDF downloads (24) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return