Citation: | TANG Shuheng,XI Zhaodong,ZHANG Songhang,et al. Occurrence phase and gas-bearing evolution of deep coalbed methane[J]. Coal Science and Technology,2025,53(3):91−100. DOI: 10.12438/cst.2025-0010 |
Deep coalbed methane has achieved a significant breakthrough in daily production of a single well and large-scale commercial development, demonstrating the enormous resource potential. The deep coalbed methane became an important supplement to China’s natural gas production. However, the geological and development characteristics of deep coalbed methane under the influence of high temperature, high pressure, and high crustal stress are significantly different from those under shallow burial conditions. At present, there is still a lack of systematic research on key fundamental issues such as the evolution of deep coalbed methane reservoirs, enrichment modes, transformation mechanisms, and evaluation of development effects. Based on the exploration and development data of Carboniferous-Permian deep coalbed methane in the North China, this study focuses on exploring the occurrence and evolution characteristics of deep coalbed methane, revealing the coupling relationship between the gas content and burial depth, identification methods for occurrence phase states, and their evolutionary patterns. The main scientific issues and future development trends of deep coalbed methane from geological exploration to development evaluation were discussed in order to promote new breakthroughs in coalbed methane industry. The results showed that: The gas content testing based on pressure-preserved coring and wire-line coring and characteristics of production curve are important means to identify the phase state of deep CBM. Among them, the isothermal adsorption experiment combined with wire-line coring is effective methods. The gas content and occurrence state of deep coal seams are jointly controlled by internal factors (such as coal rank, maceral and pore system) and external factors (such as temperature, pressure and preservation conditions). The burial depth is the basis for the enrichment of free gas in deep coal seams, and good preservation conditions are the key to the enrichment of free gas in deep coal seams. The middle-high rank coal in the Carboniferous-Permian in North China has undergone a complex burial evolution process. Four types of evolution models for the occurrence of coalbed methane, considering temperature, pressure, and tectonic activities, have been proposed. The differential structural evolution experienced by coalbed methane reservoirs is an important factor that leads to significant differences in the gas bearing characteristics of deep coal seams in different blocks or even within the same block. The evolution pattern of deep burial and weak structural transformation intensity is conducive to the enrichment of free gas and is a favorable zone for deep coalbed methane exploration and development. Deep coalbed methane has both “conventional” and “unconventional” attributes. Currently, there is still a weak understanding of the fundamental scientific issues related to the accumulation, enrichment, transformation, and development of deep coalbed methane. We should focus on solving the key fundamental problems of the evolution and developed effects of deep coalbed methane, in order to promote new breakthroughs in China’s coalbed methane industry.
[1] |
国家统计局. 国家数据[EB/OL]. [2021−09−25]. https://data. Stats. gov. cn/.
|
[2] |
罗平亚,朱苏阳. 中国建立千亿立方米级煤层气大产业的理论与技术基础[J]. 石油学报,2023,44(11):1755−1763. doi: 10.7623/syxb202311001
LUO Pingya,ZHU Suyang. Theoretical and technical fundamentals of a 100 billion-cubic-meter-scale large industry of coalbed methane in China[J]. Acta Petrolei Sinica,2023,44(11):1755−1763. doi: 10.7623/syxb202311001
|
[3] |
秦勇. 中国深部煤层气地质研究进展[J]. 石油学报,2023,44(11):1791−1811.
QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica,2023,44(11):1791−1811.
|
[4] |
叶建平,侯淞译,张守仁. “十三五” 期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探,2022,50(3):15−22. doi: 10.12363/issn.1001-1986.21.12.0738
YE Jianping,HOU Songyi,ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year Plan period and the next exploration direction[J]. Coal Geology & Exploration,2022,50(3):15−22. doi: 10.12363/issn.1001-1986.21.12.0738
|
[5] |
张君峰,毕彩芹,汤达祯,等. 中国煤层气勘探开发探索与实践[M]. 北京:地质出版社,2020.
|
[6] |
徐凤银,陈东,梁为,等. 煤层气(煤矿瓦斯)勘探开发技术进展及发展方向[M]. 北京:科学出版社,2020.
|
[7] |
袁亮,薛俊华,张农,等. 煤层气抽采和煤与瓦斯共采关键技术现状与展望[J]. 煤炭科学技术,2013,41(9):6−11,17.
YUAN Liang,XUE Junhua,ZHANG Nong,et al. Development orientation and status of key technology for mine underground coal bed methane drainage as well as coal and gas simultaneous mining[J]. Coal Science and Technology,2013,41(9):6−11,17.
|
[8] |
孟召平,章朋,田永东,等. 围压下煤储层应力−应变、渗透性与声发射试验分析[J]. 煤炭学报,2020,45(7):2544−2551.
MENG Zhaoping,ZHANG Peng,TIAN Yongdong,et al. Experimental analysis of stress-strain,permeability and acoustic emission of coal reservoir under different confining pressures[J]. Journal of China Coal Society,2020,45(7):2544−2551.
|
[9] |
苏现波,夏大平,赵伟仲,等. 煤层气生物工程研究进展[J]. 煤炭科学技术,2020,48(6):1−30.
SU Xianbo,XIA Daping,ZHAO Weizhong,et al. Research advances of coalbed gas bioengineering[J]. Coal Science and Technology,2020,48(6):1−30.
|
[10] |
刘大锰,刘正帅,蔡益栋. 煤层气成藏机理及形成地质条件研究进展[J]. 煤炭科学技术,2020,48(10):1−16.
LIU Dameng,LIU Zhengshuai,CAI Yidong. Research progress on accumulation mechanism and formation geological conditions of coalbed methane[J]. Coal Science and Technology,2020,48(10):1−16.
|
[11] |
汤达祯,杨曙光,唐淑玲,等. 准噶尔盆地煤层气勘探开发与地质研究进展[J]. 煤炭学报,2021,46(8):2412−2425.
TANG Dazhen,YANG Shuguang,TANG Shuling,et al. Advance on exploration-development and geological research of coalbed methane in the Junggar Basin[J]. Journal of China Coal Society,2021,46(8):2412−2425.
|
[12] |
秦勇,申建,李小刚. 中国煤层气资源控制程度及可靠性分析[J]. 天然气工业,2022,42(6):19−32. doi: 10.3787/j.issn.1000-0976.2022.06.002
QIN Yong,SHEN Jian,LI Xiaogang. Control degree and reliability of CBM resources in China[J]. Natural Gas Industry,2022,42(6):19−32. doi: 10.3787/j.issn.1000-0976.2022.06.002
|
[13] |
桑树勋,韩思杰,刘世奇,等. 高煤阶煤层气富集机理的深化研究[J]. 煤炭学报,2022,47(1):388−403.
SANG Shuxun,HAN Sijie,LIU Shiqi,et al. Comprehensive study on the enrichment mechanism of coalbed methane in high rank coal reservoirs[J]. Journal of China Coal Society,2022,47(1):388−403.
|
[14] |
郭晓娇,王雷,姚仙洲,等. 深部煤岩地质特征及煤层气富集主控地质因素:以鄂尔多斯盆地东部M区为例[J]. 石油实验地质,2025,47(1):17−26. doi: 10.11781/sysydz2025010017
GUO Xiaojiao,WANG Lei,Yao Xianzhou,et al. Geological characteristics of deep coal rock and main geological factors controlling coalbed methane enrichment:A case study of the M area in the eastern Ordos Basin[J]. Petroleum Geology & Experiment,2025,47(1):17−26. doi: 10.11781/sysydz2025010017
|
[15] |
ZHU Q Y,DU X J,ZHANG T,et al. Investigation into the variation characteristics and influencing factors of coalbed methane gas content in deep coal seams[J]. Scientific Reports,2024,14(1):18813. doi: 10.1038/s41598-024-66011-2
|
[16] |
LI Y H,WANG Y H,DING J P,et al. Pore-scale permeability characteristics of deep coalbed methane reservoirs[J]. Energy & Fuels,2024,38(17):16149−16158.
|
[17] |
KĘDZIOR S,TEPER L. Occurrence and potential for coalbed methane extraction in the depocenter area of the upper Silesian coal basin (Poland) in the context of selected geological factors[J]. Energies,2024,17(11):2592. doi: 10.3390/en17112592
|
[18] |
李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.
LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.
|
[19] |
徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42,262. doi: 10.11935/j.issn.1673-1506.2022.04.003
XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep(layer)coalbed methane reservoir forming modes and key technical countermeasures:Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42,262. doi: 10.11935/j.issn.1673-1506.2022.04.003
|
[20] |
杨敏芳,孙斌,鲁静,等. 准噶尔盆地深、浅层煤层气富集模式对比分析[J]. 煤炭学报,2019,44(S2):601−609.
YANG Minfang,SUN Bin,LU Jing,et al. Comparative analysis on the enrichment patterns of deep and shallow CBM in Junggar Basin[J]. Journal of China Coal Society,2019,44(S2):601−609.
|
[21] |
孙斌,杨敏芳,杨青,等. 准噶尔盆地深部煤层气赋存状态分析[J]. 煤炭学报,2017,42(S1):195−202.
SUN Bin,YANG Minfang,YANG Qing,et al. Analysis on occurrence state of deep coalbed methane in Junggar basin[J]. Journal of China Coal Society,2017,42(S1):195−202.
|
[22] |
刘池洋,王建强,张东东,等. 鄂尔多斯盆地油气资源丰富的成因与赋存-成藏特点[J]. 石油与天然气地质,2021,42(5):1011−1029. doi: 10.11743/ogg20210501
LIU Chiyang,WANG Jianqiang,ZHANG Dongdong,et al. Genesis of rich hydrocarbon resources and their occurrence and accumulation characteristics in the Ordos Basin[J]. Oil & Gas Geology,2021,42(5):1011−1029. doi: 10.11743/ogg20210501
|
[23] |
秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136.
QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136.
|
[24] |
高玉巧,李鑫,何希鹏,等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探,2021,49(2):21−27. doi: 10.3969/j.issn.1001-1986.2021.02.003
GAO Yuqiao,LI Xin,HE Xipeng,et al. Study on the main controlling geological factors of high yield deep CBM in Southern Yanchuan Block[J]. Coal Geology & Exploration,2021,49(2):21−27. doi: 10.3969/j.issn.1001-1986.2021.02.003
|
[25] |
陈世达,汤达祯,陶树,等. 沁南−郑庄区块深部煤层气“临界深度” 探讨[J]. 煤炭学报,2016,41(12):3069−3075.
CHEN Shida,TANG Dazhen,TAO Shu,et al. Discussion about “critical depth” of deep coalbed methane in Zhengzhuang area,Qinshui Basin[J]. Journal of China Coal Society,2016,41(12):3069−3075.
|
[26] |
韩思杰,桑树勋,周培明. 济阳坳陷深部煤层吸附效应及含气性特征[J]. 中国石油勘探,2017,22(5):33−42. doi: 10.3969/j.issn.1672-7703.2017.05.004
HAN Sijie,SANG Shuxun,ZHOU Peiming. Adsorption effect and gas-bearing property of deep coal beds in Jiyang depression[J]. China Petroleum Exploration,2017,22(5):33−42. doi: 10.3969/j.issn.1672-7703.2017.05.004
|
[27] |
张兵,徐文军,徐延勇,等. 鄂尔多斯盆地东缘临兴区块深部关键煤储层参数识别[J]. 煤炭学报,2016,41(1):87−93.
ZHANG Bing,XU Wenjun,XU Yanyong,et al. Key parameters identification for deep coalbed methane reservoir in Linxing block of eastern Ordos Basin[J]. Journal of China Coal Society,2016,41(1):87−93.
|
[28] |
申建,秦勇,傅雪海,等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学,2014,25(9):1470−1476.
SHEN Jian,QIN Yong,FU Xuehai,et al. Properties of deep coalbed methane reservoir-forming conditions and critical depth discussion[J]. Natural Gas Geoscience,2014,25(9):1470−1476.
|
[29] |
赵丽娟,秦勇,申建. 深部煤层吸附行为及含气量预测模型[J]. 高校地质学报,2012,18(3):553−557.
ZHAO Lijuan,QIN Yong,SHEN Jian. Adsorption behavior and abundance predication model of deep coalbed methane[J]. Geological Journal of China Universities,2012,18(3):553−557.
|
[30] |
秦勇,申建,王宝文,等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报,2012,33(1):48−54. doi: 10.7623/syxb201201006
QIN Yong,SHEN Jian,WANG Baowen,et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica,2012,33(1):48−54. doi: 10.7623/syxb201201006
|
[31] |
陈刚,李五忠. 鄂尔多斯盆地深部煤层气吸附能力的影响因素及规律[J]. 天然气工业,2011,31(10):47−49,118. doi: 10.3787/j.issn.1000-0976.2011.10.010
CHEN Gang,LI Wuzhong. Influencing factors and patterns of CBM adsorption capacity in the deep Ordos Basin[J]. Natural Gas Industry,2011,31(10):47−49,118. doi: 10.3787/j.issn.1000-0976.2011.10.010
|
[32] |
郗兆栋,唐书恒,刘忠,等. 宁武盆地深部煤储层地温场特征及其对含气性的影响[J]. 煤田地质与勘探,2024,52(2):1−10. doi: 10.12363/issn.1001-1986.23.10.0645
XI Zhaodong,TANG Shuheng,LIU Zhong,et al. Deep coal reservoirs in the Ningwu basin:Geothermal field characteristics and their effects on gas-bearing properties[J]. Coal Geology & Exploration,2024,52(2):1−10. doi: 10.12363/issn.1001-1986.23.10.0645
|
[33] |
闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区” 的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.
YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.
|
[34] |
HAO F,ZOU H Y,LU Y C. Mechanisms of shale gas storage:Implications for shale gas exploration in China[J]. AAPG Bulletin,2013,97(8):1325−1346. doi: 10.1306/02141312091
|
[35] |
XI Z D,TANG S H,ZHANG S H,et al. Controls of marine shale gas accumulation in the eastern periphery of the Sichuan Basin,South China[J]. International Journal of Coal Geology,2022,251:103939. doi: 10.1016/j.coal.2022.103939
|
[36] |
郗兆栋,唐书恒,杨文府,等. 煤层自封闭性对深层煤岩气的富集与改造意义[J]. 天然气工业,2024,44(10):105−112. doi: 10.3787/j.issn.1000-0976.2024.10.008
XI Zhaodong,TANG Shuheng,YANG Wenfu,et al. Implications of coal reservoir self-sealing for the enrichment and stimulation of deep coalrock gas[J]. Natural Gas Industry,2024,44(10):105−112. doi: 10.3787/j.issn.1000-0976.2024.10.008
|
[37] |
李勇,高爽,吴鹏,等. 深部煤层气游离气含量预测模型评价与校正:以鄂尔多斯盆地东缘深部煤层为例[J]. 石油学报,2023,44(11):1892−1902. doi: 10.7623/syxb202311011
LI Yong,GAO Shuang,WU Peng,et al. Evaluation and correction of prediction model of free gas content in deep coalbed methane:A case study of deep coal seam in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1892−1902. doi: 10.7623/syxb202311011
|
[38] |
徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130. doi: 10.12363/issn.1001-1986.22.06.0503
XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130. doi: 10.12363/issn.1001-1986.22.06.0503
|
[39] |
许浩,汤达祯,陶树,等. 深、浅部煤层气地质条件差异性及其形成机制[J]. 煤田地质与勘探,2024,52(2):33−39. doi: 10.12363/issn.1001-1986.23.10.0693
XU Hao,TANG Dazhen,TAO Shu,et al. Differences in geological conditions of deep and shallow coalbed methane and their formation mechanisms[J]. Coal Geology & Exploration,2024,52(2):33−39. doi: 10.12363/issn.1001-1986.23.10.0693
|
[40] |
ZHOU L H,LI Y,JIN F M,et al. Decipher hydrocarbon generation and accumulation based on fluid inclusion and chronology:A case study from the Upper Paleozoic buried-hills in Huanghua Depression,Bohai Bay Basin[J]. Petroleum Science,2023,20(4):1998−2008. doi: 10.1016/j.petsci.2023.03.010
|
[41] |
李俊,张定宇,李大华,等. 沁水盆地煤系非常规天然气共生聚集机制[J]. 煤炭学报,2018,43(6):1533−1546.
LI Jun,ZHANG Dingyu,LI Dahua,et al. Co-accumulating mechanisms of unconventional gas in the coal measure of the Qinshui Basin[J]. Journal of China Coal Society,2018,43(6):1533−1546.
|
[42] |
周晓刚. 宁武盆地构造演化及其对页岩气成藏的控制[D]. 徐州:中国矿业大学,2015.
ZHOU Xiaogang. Tectonic evolution of Ningwu basin and its control on shale gas accumulation[D]. Xuzhou:China University of Mining and Technology,2015.
|