Advance Search
TAN Zhanglu,WANG Meijun,YE Zihan. Methodological system and implementation framework of data governance for intelligent coal mines[J]. Coal Science and Technology,2025,53(1):284−295. DOI: 10.12438/cst.2024-1794
Citation: TAN Zhanglu,WANG Meijun,YE Zihan. Methodological system and implementation framework of data governance for intelligent coal mines[J]. Coal Science and Technology,2025,53(1):284−295. DOI: 10.12438/cst.2024-1794

Methodological system and implementation framework of data governance for intelligent coal mines

More Information
  • Received Date: December 02, 2024
  • Available Online: January 20, 2025
  • Data governance underpins the intelligent development of coal mines and ensures collaborative centralized control of mine systems. To tackle the issues of inadequate top-level design and methodological support in intelligent coal mine data governance, a methodological system has been developed. The methodological system comprises six key components: theoretical foundation, conceptual model, basic principles, processes and procedures, methods and tools, and evaluation criteria. It systematically clarifies the basis and principles for effectively realizing the goals of intelligent coal mine data governance, and provides the theoretical foundation and methodological support for the top-level design of intelligent coal mine data governance. Meanwhile, the implementation framework for intelligent coal mine data governance is developed with reference to relevant technical standards, which provides specific paths and management methods for the management and implementation of intelligent coal mine data governance. Furthermore, the technical architecture for intelligent coal mine data governance is designed based on the idea of layered architecture to provide technical methods and tools for the technical realization of intelligent coal mine data governance. The following study results have been obtained. ① The theoretical foundation of intelligent coal mine data governance is grounded in complex system theory, data strategy management theory, digital continuity theory, public governance theory, collaborative innovation theory, information lifecycle theory and PDCA cycle theory. ② The conceptual model of intelligent coal mine data governance consists of five core conceptual dimensions: governance philosophy, governance goals, governance subjects, governance objects, and governance processes and tools. It adheres to the principles of business orientation, collaborative governance, culture-driven, technology-enabled, process-embedded, and continuous improvement. ③ The implementation framework of intelligent coal mine data governance delineates the management processes and key procedures from the top down, encompassing four key links of the iterative cycle: coordination and planning, construction and operation, monitoring and evaluation, and improvement and optimization. ④ The technical architecture of the Data Lakehouse for intelligent coal mine describes the system structure and technology selection for the data governance platform. It offers technical methods and tools to facilitate the implementation of intelligent coal mine data governance, with the core focus on developing the five key layers of the data middle platform. ⑤ The data governance capability maturity model for intelligent coal mines provides an assessment criteria framework and capability improvement pathway. It encompasses three dimensions namely, the level of capability maturity, data governance capabilities, and data governance practices. The enhancement of data governance capabilities in intelligent coal mines progresses from project management to benchmarking, encompassing process, standardization, and quantitative management stages.

  • [1]
    毛君,杨润坤,谢苗,等. 煤矿智能快速掘进关键技术研究现状及展望[J]. 煤炭学报,2024,49(2):1214−1229.

    MAO Jun,YANG Runkun,XIE Miao,et al. Research status and prospects of key technologies for intelligent rapid excavation in coal mines[J]. Journal of China Coal Society,2024,49(2):1214−1229.
    [2]
    袁智,蒋庆友,庞振忠. 我国煤矿智能化综采开采技术装备应用现状与发展思考[J]. 煤炭科学技术,2024,52(9):189−198. doi: 10.12438/cst.2024-1054

    YUAN Zhi,JIANG Qingyou,PANG Zhenzhong. Application status and development thinking of intelligent mining technology and equipment in coal mines in China[J]. Coal Science and Technology,2024,52(9):189−198. doi: 10.12438/cst.2024-1054
    [3]
    王国法,张建中,刘再斌,等. 煤炭绿色开发复杂巨系统数智化技术进展[J]. 煤炭科学技术,2024,52(11):1−16. doi: 10.12438/cst.2024-1190

    WANG Guofa,ZHANG Jianzhong,LIU Zaibin,et al. Progress in digital and intelligent technologies for complex giant systems in green coal development[J]. Coal Science and Technology,2024,52(11):1−16. doi: 10.12438/cst.2024-1190
    [4]
    王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181−202.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181−202.
    [5]
    刘峰,郭林峰,张建明,等. 煤炭工业数字智能绿色三化协同模式与新质生产力建设路径[J]. 煤炭学报,2024,49(1):1−15.

    LIU Feng,GUO Linfeng,ZHANG Jianming,et al. Synergistic mode of digitalization-intelligentization-greeniation of the coal industry and it’s path of building new coal productivity[J]. Journal of China Coal Society,2024,49(1):1−15.
    [6]
    何敏. 智能煤矿数据治理框架与发展路径[J]. 工矿自动化,2020,46(11):23−27.

    HE Min. Framework and development path of data governance in intelligent coal mine[J]. Industry and Mine Automation,2020,46(11):23−27.
    [7]
    谭章禄,吴琦. 基于层级链参考模型的智慧矿山建设问题分析[J]. 矿业科学学报,2022,7(2):257−266.

    TAN Zhanglu,WU Qi. Analysis of the problems of smart mine construction based on the layer-level-chain reference model[J]. Journal of Mining Science and Technology,2022,7(2):257−266.
    [8]
    谭章禄,王美君. 智慧矿山数据治理概念内涵、发展目标与关键技术[J]. 工矿自动化,2022,48(5):6−14.

    TAN Zhanglu,WANG Meijun. Research on the concept connotation,development goal and key technologies of data governance for smart mine[J]. Journal of Mine Automation,2022,48(5):6−14.
    [9]
    谭章禄,王美君. 智能化煤矿数据治理概念模型及技术架构研究[J]. 矿业科学学报,2023,8(2):242−255.

    TAN Zhanglu,WANG Meijun. Research on the conceptual model and technical architecture of data governance for intelligent coal mine[J]. Journal of Mining Science and Technology,2023,8(2):242−255.
    [10]
    谭章禄,王美君,叶紫涵. 智能化煤矿数据治理体系与关键问题研究[J]. 工矿自动化,2023,49(5):22−29.

    TAN Zhanglu,WANG Meijun,YE Zihan. Research on intelligent coal mine data governance system and key issues[J]. Journal of Mine Automation,2023,49(5):22−29.
    [11]
    王美君,谭章禄,李慧园,等. 智能化煤矿数据治理能力评估与提升策略研究[J]. 矿业科学学报,2024,9(1):106−115.

    WANG Meijun,TAN Zhanglu,LI Huiyuan,et al. Research on evaluation and promotion strategy of data governance capability for intelligent coal mines[J]. Journal of Mining Science and Technology,2024,9(1):106−115.
    [12]
    姜德义,魏立科,王翀,等. 智慧矿山边缘云协同计算技术架构与基础保障关键技术探讨[J]. 煤炭学报,2020,45(1):484−492.

    JIANG Deyi,WEI Like,WANG Chong,et al. Discussion on the technology architecture and key basic support technology for intelligent mine edge-cloud collaborative computing[J]. Journal of China Coal Society,2020,45(1):484−492.
    [13]
    杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177−185.

    DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177−185.
    [14]
    疏礼春. 智能煤矿数据中台架构及关键技术研究[J]. 工矿自动化,2021,47(6):40−44.

    SHU Lichun. Research on the architecture and key technologies of intelligent coal mine data middle platform[J]. Industry and Mine Automation,2021,47(6):40−44.
    [15]
    方乾,张晓霞,王霖,等. 智能化煤矿大数据治理关键技术研究、实践与应用[J]. 工矿自动化,2023,49(5):37−45,73.

    FANG Qian,ZHANG Xiaoxia,WANG Lin,et al. Research,practice and application of key technologies of intelligent coal mine big data governance[J]. Journal of Mine Automation,2023,49(5):37−45,73.
    [16]
    王国法,任怀伟,赵国瑞,等. 智能化煤矿数据模型及复杂巨系统耦合技术体系[J]. 煤炭学报,2022,47(1):61−74.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Digital model and giant system coupling technology system of smart coal mine[J]. Journal of China Coal Society,2022,47(1):61−74.
    [17]
    谭章禄,王美君. 智能化煤矿数据归类与编码实质、目标与技术方法[J]. 工矿自动化,2023,49(1):56−62,72.

    TAN Zhanglu,WANG Meijun. The essence,goal and technical method of intelligent coal mine data classification and coding[J]. Journal of Mine Automation,2023,49(1):56−62,72.
    [18]
    谭靓洁,李永飞,吴琼. 基于区块链的煤矿安监云数据安全访问模型研究[J]. 工矿自动化,2022,48(5):93−99.

    TAN Liangjie,LI Yongfei,WU Qiong. Research on security access model of coal mine safety supervision cloud data based on blockchain[J]. Industry and Mine Automation,2022,48(5):93−99.
    [19]
    韩培强,胡而已,叶兰,等. 智能矿山数据质量管理研究及实践[J]. 中国煤炭,2024,50(2):70−76.

    HAN Peiqiang,HU Eryi,YE Lan,et al. Research and practice of intelligent mine data quality management[J]. China Coal,2024,50(2):70−76.
    [20]
    尚伟栋,王海力,张晓霞,等. 基于对象模型的煤矿数据采集融合共享系统[J]. 工矿自动化,2024,50(1):17−24,34.

    SHANG Weidong,WANG Haili,ZHANG Xiaoxia,et al. A coal mine data acquisition,fusion and sharing system based on object model[J]. Journal of Mine Automation,2024,50(1):17−24,34.
    [21]
    安小米,王丽丽. 大数据治理体系构建方法论框架研究[J]. 图书情报工作,2019,63(24):43−51.

    AN Xiaomi,WANG Lili. Research on methodology framework for big data governance system building[J]. Library and Information Service,2019,63(24):43−51.
    [22]
    袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1−14.

    YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1−14.
    [23]
    程建远,王保利,范涛,等. 煤矿地质透明化典型应用场景及关键技术[J]. 煤炭科学技术,2022,50(7):1−12.

    CHENG Jianyuan,WANG Baoli,FAN Tao,et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology,2022,50(7):1−12.
    [24]
    王家臣,刘云熹,李杨,等. 矿业系统工程60年发展与展望[J]. 煤炭学报,2024,49(1):261−279.

    WANG Jiachen,LIU Yunxi,LI Yang,et al. 60 years development and prospect of mining systems engineering[J]. Journal of China Coal Society,2024,49(1):261−279.
    [25]
    张晓霞,陈思宇,苏上海,等. 矿井智能一体化管控平台设计及应用[J]. 煤炭科学技术,2022,50(9):168−178.

    ZHANG Xiaoxia,CHEN Siyu,SU Shanghai,et al. Design and application of mine intelligent integrated management and control platform[J]. Coal Science and Technology,2022,50(9):168−178.
    [26]
    赵莉,李俊. 智能化煤矿劳动力结构转型与职业重塑[J]. 矿业科学学报,2023,8(6):868−878.

    ZHAO Li,LI Jun. Labor structure transformation and career remodeling of intelligent coal mine[J]. Journal of Mining Science and Technology,2023,8(6):868−878.
    [27]
    付恩三,刘光伟,白润才,等. 大数据时代矿山协同监管监察新思路[J]. 中国安全科学学报,2023,33(8):39−44.

    FU Ensan,LIU Guangwei,BAI Runcai,et al. Exploration and research of mine multi-element cooperative supervision new thinking in era of big data[J]. China Safety Science Journal,2023,33(8):39−44.
    [28]
    孙旭东,刘庚慧,段星月,等. 智能化煤矿监测监控数据治理能力提升路径研究[J]. 煤炭工程,2023,55(6):139−144.

    SUN Xudong,LIU Genghui,DUAN Xingyue,et al. Improvement path of monitoring data governance ability for intelligent coal mines[J]. Coal Engineering,2023,55(6):139−144.
    [29]
    伊丙鼎. 我国煤矿井下地应力参数数据库的开发和研究[J]. 煤矿安全,2021,52(5):134−138.

    YI Bingding. Development and research of in situ stress parameters database for underground coal mines of China[J]. Safety in Coal Mines,2021,52(5):134−138.
    [30]
    王霖,方乾,张晓霞,等. 智能化煤矿数据仓库建模方法[J]. 工矿自动化,2022,48(4):5−13.

    WANG Lin,FANG Qian,ZHANG Xiaoxia,et al. Intelligent coal mine data warehouse modeling method[J]. Journal of Mine Automation,2022,48(4):5−13.

Catalog

    Article views (145) PDF downloads (63) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return