Citation: | NING Shuzheng,YAN Xiaoyun,HUANG Shaoqing,et al. Mineralization characteristics and exploration progress of germanium resources in Chinese coal[J]. Coal Science and Technology,2025,53(1):225−236. DOI: 10.12438/cst.2024-1772 |
Germanium, as a typical scarce element and important strategic metal, is widely used in fields such as optoelectronics, semiconductors, and chemicals. The exploration and development of germanium resources are therefore of great significance. Under specific geological processes, germanium can be highly enriched in coal, making coal an important source of germanium. In China, germanium-bearing coal resources are notably advantageous and are primarily distributed in regions such as Lincang in Yunnan, and the Wumuchang mining area in the Ulan Tuha and Yimin coalfields of Inner Mongolia. This paper analyzes the resource distribution and exploration status of germanium in Chinese coal, and, in conjunction with the analysis of typical coal germanium deposits both domestically and internationally, introduces the discovery processes of large to super-large coal-based germanium deposits. The paper summarizes exploration techniques and prospecting experiences for different types of coal germanium deposits. Germanium enrichment in typical Chinese coal deposits is closely related to geological processes such as hydrothermal activity and diagenesis. However, the occurrence and enrichment characteristics of germanium in coal show regional variations. Compared to coal seams, the distribution of germanium in coal is highly unstable. For the exploration of germanium-rich coal, drilling-based techniques have been established through years of exploration practice. However, further exploration is needed to improve the efficiency of germanium exploration in coal. In the future, innovations in techniques such as geochemical exploration, geological model construction, and resource evaluation are expected to promote the efficient exploration and development of germanium in coal, providing resource security for emerging industries.
[1] |
MU R F,WANG S Q,WANG X L,et al. Organic modes of occurrence and evolution mechanism of germanium and lithium in coal:Insights from density functional theory[J]. International Journal of Coal Geology,2025,298:104661. doi: 10.1016/j.coal.2024.104661
|
[2] |
WEI Q,ZHAO L. Modes of occurrence of beryllium in the Ge-rich coal deposit,Lincang,SW China:Theoretical insight into organic association and distribution[J]. Journal of Hazardous Materials,2024,480:135913. doi: 10.1016/j.jhazmat.2024.135913
|
[3] |
张苏江,张新智,邓文兵. 全球锗资源分布供需与产业链发展现状思考[J]. 矿产综合利用,2024(4):11−20. doi: 10.3969/j.issn.1000-6532.2024.04.002
ZHANG Sujiang,ZHANG Xinzhi,DENG Wenbing. Distribution and supply of germanium resources in China and abroad and development status of antimony industry China[J]. Multipurpose Utilization of Mineral Resources,2024(4):11−20. doi: 10.3969/j.issn.1000-6532.2024.04.002
|
[4] |
商务部 海关总署公告 2023年第23号 关于对镓、锗相关物项实施出口管制的公告[EB/OL]. (2023−07−03)[2024−12−01]. http://www.mofcom.gov.cn/.
|
[5] |
宁树正,黄少青,严晓云,等. 我国煤系锗镓资源前景及研究方向[J]. 中国矿业,2023,32(11):1−11. doi: 10.12075/j.issn.1004-4051.20230664
NING Shuzheng,HUANG Shaoqing,YAN Xiaoyun,et al. Prospect and research direction of germanium and gallium resources in coal-bearing strata in China[J]. China Mining Magazine,2023,32(11):1−11. doi: 10.12075/j.issn.1004-4051.20230664
|
[6] |
宁树正,黄少青,朱士飞,等. 中国煤中金属元素成矿区带[J]. 科学通报,2019,64(24):2501−2513. doi: 10.1360/N972019-00377
NING Shuzheng,HUANG Shaoqing,ZHU Shifei,et al. Mineralization zoning of coal-metal deposits in China[J]. Chinese Science Bulletin,2019,64(24):2501−2513. doi: 10.1360/N972019-00377
|
[7] |
温汉捷,朱传威,杜胜江,等. 中国镓锗铊镉资源[J]. 科学通报,2020,65(33):3688−3699. doi: 10.1360/TB-2020-0267
WEN Hanjie,ZHU Chuanwei,DU Shengjiang,et al. Gallium(Ga),germanium(Ge),thallium(Tl) and cadmium(Cd) resources in China[J]. Chinese Science Bulletin,2020,65(33):3688−3699. doi: 10.1360/TB-2020-0267
|
[8] |
代世峰,刘池洋,赵蕾,等. 煤系中战略性金属矿产资源:意义和挑战[J]. 煤炭学报,2022,47(5):1743−1749.
DAI Shifeng,LIU Chiyang,ZHAO Lei,et al. Strategic metal resources in coal-bearing strata:Significance and challenges[J]. Journal of China Coal Society,2022,47(5):1743−1749.
|
[9] |
SEREDIN V V,FINKELMAN R B. Metalliferous coals:A review of the main genetic and geochemical types[J]. International Journal of Coal Geology,2008,76(4):253−289. doi: 10.1016/j.coal.2008.07.016
|
[10] |
任德贻,赵峰华,代世峰,等. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.
|
[11] |
赵汀,刘超,王登红,等. 中国锗矿资源保障程度与潜力评价[J]. 中国矿业,2024,33(4):57−68. doi: 10.12075/j.issn.1004-4051.20240546
ZHAO Ting,LIU Chao,WANG Denghong,et al. Security and potential assessment of germanium ore resources in China[J]. China Mining Magazine,2024,33(4):57−68. doi: 10.12075/j.issn.1004-4051.20240546
|
[12] |
WEI Q,WANG S B,ZHAO L,et al. Modes of occurrence of organically-associated arsenic in Ge-rich coal deposits[J]. Fuel,2024,371:132067. doi: 10.1016/j.fuel.2024.132067
|
[13] |
U. S. Geological Survey. Mineral commodity summaries 2020. (2020)[2024−12−01]. https://doi.org/10.3133/mcs2020.
|
[14] |
赵汀,王登红,刘超,等. 中国锗矿成矿规律与开发利用现状[J]. 地质学报,2019,93(6):1245−1251. doi: 10.3969/j.issn.0001-5717.2019.06.006
ZHAO Ting,WANG Denghong,LIU Chao,et al. Metallogenic and utilization status of Ge deposit in China[J]. Acta Geologica Sinica,2019,93(6):1245−1251. doi: 10.3969/j.issn.0001-5717.2019.06.006
|
[15] |
黄文辉,赵继尧. 中国煤中的锗和镓[J]. 中国煤田地质,2002,14(S1):64−69.
HUANG Wenhui,ZHAO Jiyao. Germanium and gallium in coal of China[J]. Coal Geology of China,2002,14(S1):64−69.
|
[16] |
黄少青,张建强,张恒利. 东北赋煤区煤中锗元素分布特征及富集控制因素[J]. 煤田地质与勘探,2018,46(3):6−10. doi: 10.3969/j.issn.1001-1986.2018.03.002
HUANG Shaoqing,ZHANG Jianqiang,ZHANG Hengli. Distribution and controlling factors of enrichment of germanium in coal-bearing region of NorthEast China[J]. Coal Geology & Exploration,2018,46(3):6−10. doi: 10.3969/j.issn.1001-1986.2018.03.002
|
[17] |
王婷灏. 内蒙古乌兰图嘎煤—锗矿床富集规律与地球化学性质研究[D]. 北京:中国地质大学(北京),2016.
WANG Tinghao. Study on enrichment law and geochemical properties of Wulantuga coal-germanium deposit in Inner Mongolia[D]. Beijing:China University of Geosciences,2016.
|
[18] |
ZHUANG X G,QUEROL X,ALASTUEY A,et al. Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field,Inner Mongolia,Northeastern China[J]. International Journal of Coal Geology,2006,66(1-2):119−136. doi: 10.1016/j.coal.2005.06.005
|
[19] |
DAI S F,REN D Y,CHOU C L,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21. doi: 10.1016/j.coal.2011.02.003
|
[20] |
DAI S F,FINKELMAN R B,FRENCH D,et al. Modes of occurrence of elements in coal:A critical evaluation[J]. Earth-Science Reviews,2021,222:103815. doi: 10.1016/j.earscirev.2021.103815
|
[21] |
王婷灏,黄文辉,闫德宇,等. 中国大型煤-锗矿床成矿模式研究进展:以云南临沧和内蒙古乌兰图嘎煤-锗矿床为例[J]. 地学前缘,2016,23(3):113−123.
WANG Tinghao,HUANG Wenhui,YAN Deyu,et al. Progress of research on mineralization mode of large coal-Ge deposits in China:Coal-Ge deposit in Wulantuga of Inner Mongolia and Lincang of Yunan[J]. Earth Science Frontiers,2016,23(3):113−123.
|
[22] |
矿产资源保护监督司. 2022年全国矿产资源储量统计表[EB/OL]. (2023−06−16)[2024−12−01]. https://www.mnr.gov.cn/sj/sjfw/kc_19263/kczycltjb/202408/P020240806580597739563.pdf.
|
[23] |
代世峰,魏强,王西勃,等. 煤型锗矿床[M]. 北京:科学出版社,2021.
|
[24] |
DAI S F,FINKELMAN R B,HOWER J C,et al. Inorganic geochemistry of coal[M]. San Diego: Elsevier, 2023.
|
[25] |
WEI Q,ZHAO L,WEI R F. Uranium speciation in the Lincang Ge-rich coal deposit,Yunnan Province,China:Theoretical implication for uranyl fixation and U mineralization[J]. Ore Geology Reviews,2024,171:106171. doi: 10.1016/j.oregeorev.2024.106171
|
[26] |
HU R Z,QI H W,ZHOU M F,et al. Geological and geochemical constraints on the origin of the giant Lincang coal seam-hosted germanium deposit,Yunnan,SW China:A review[J]. Ore Geology Reviews,2009,36(1-3):221−234. doi: 10.1016/j.oregeorev.2009.02.007
|
[27] |
李慧,刘显凡,肖文君. 临沧锗矿床地质特征及成因[J]. 地质论评,2015,61(S1):335−336.
LI Hui,LIU Xianfan,XIAO Wenjun. Geological characteristics and genesis of Lincang germanium deposit[J]. Geological Review,2015,61(S1):335−336.
|
[28] |
戚华文,胡瑞忠,苏文超,等. 临沧锗矿褐煤的稀土元素地球化学[J]. 地球化学,2002,31(3):300−308. doi: 10.3321/j.issn:0379-1726.2002.03.012
QI Huawen,HU Ruizhong,SU Wenchao,et al. REE geochemistry of lignites in Lincang germanium deposit,Yunnan Province[J]. Geochimica,2002,31(3):300−308. doi: 10.3321/j.issn:0379-1726.2002.03.012
|
[29] |
DAI S F,WANG X B,SEREDIN V V,et al. Petrology,mineralogy,and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit,Inner Mongolia,China:New data and genetic implications[J]. International Journal of Coal Geology,2012,90:72−99.
|
[30] |
QI H W,HU R Z,ZHANG Q. REE geochemistry of the Cretaceous lignite from wulantuga germanium deposit,Inner Mongolia,northeastern China[J]. International Journal of Coal Geology,2007,71(2-3):329−344. doi: 10.1016/j.coal.2006.12.004
|
[31] |
魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查技术方法[J]. 煤炭科学技术,2023,51(12):27−41. doi: 10.12438/cst.2023-1115
WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata[J]. Coal Science and Technology,2023,51(12):27−41 doi: 10.12438/cst.2023-1115
|
[32] |
LI X,WEI Y C,CAO D Y,et al. Cooperative exploration model of coal–Ge deposit:A case study of the Wulantuga coal–Ge deposit in Shengli coalfield,Inner Mongolia,China[J]. Energy Exploration & Exploitation,2024,42(5):1666−1683.
|
[33] |
DU G,ZHUANG X G,QUEROL X,et al. Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield,Inner Mongolia,northeastern China[J]. International Journal of Coal Geology,2009,78(1):16−26. doi: 10.1016/j.coal.2008.10.004
|
[34] |
孙升林,吴国强,曹代勇,等. 煤系矿产资源及其发展趋势[J]. 中国煤炭地质,2014,26(11):1−11. doi: 10.3969/j.issn.1674-1803.2014.11.01
SUN Shenglin,WU Guoqiang,CAO Daiyong,et al. Mineral resources in coal measures and development trend[J]. Coal Geology of China,2014,26(11):1−11. doi: 10.3969/j.issn.1674-1803.2014.11.01
|
[35] |
敖卫华,黄文辉,马延英,等. 中国煤中锗资源特征及利用现状[J]. 资源与产业,2007,9(5):16−18. doi: 10.3969/j.issn.1673-2464.2007.05.005
AO Weihua,HUANG Wenhui,MA Yanying,et al. Features and utilization of germanium resource in coal in China[J]. Resources & Industries,2007,9(5):16−18. doi: 10.3969/j.issn.1673-2464.2007.05.005
|
[36] |
林堃琦,黄文辉,汪远征,等. 伊敏煤田五牧场区富锗煤分布规律及成矿机理分析[J]. 中国煤炭地质,2016,28(2):1−6. doi: 10.3969/j.issn.1674-1803.2016.02.01
LIN Kunqi;HUANG Wenhu;WANG Yuanzhenget al. Germanium-rich coal distribution pattern and metallogenic mechanism analysis in wumuchang district,yimin coalfield[J]. Coal Geology of China,2016,28(2):1−6. doi: 10.3969/j.issn.1674-1803.2016.02.01
|
[37] |
曹代勇,魏迎春,李新,等. 煤与煤系战略性金属矿产协同勘查理论与技术体系框架探讨[J]. 煤炭学报,2024,49(1):479−494.
CAO Daiyong,WEI Yingchun,LI Xin,et al. Discussion on the theory and technical system framework of cooperative exploration of coal and strategic metal resources in coal-bearing strata[J]. Journal of China Coal Society,2024,49(1):479−494.
|
[38] |
龙庆兵、吴迎波. 云南省临沧大寨铀锗矿核查矿区资源储量核查报告[R]. 云南:云南省核工业二〇九地质大队,2010
|
[39] |
海宇,孟庆宇,李志广,等. 内蒙古自治区胜利煤田乌兰图嘎矿区煤、锗矿资源储量核实报告[R]. 内蒙古:锡林郭勒盟乌兰图嘎煤炭有限责任公司,2019.
|
[40] |
卢家烂,庄汉平,傅家谟,等. 临沧超大型锗矿床的沉积环境、成岩过程和热液作用与锗的富集[J]. 地球化学,2000,29(1):36−42. doi: 10.3321/j.issn:0379-1726.2000.01.006
LU Jialan,ZHUANG Hanping,FU Jiamo,et al. Sedimentation,diagenesis,hydrothermal process and mineralization of germanium in the Lincang superlarge germanium deposit in Yunnan Province,China[J]. Geochimica,2000,29(1):36−42. doi: 10.3321/j.issn:0379-1726.2000.01.006
|
[41] |
QI H W,HU R Z,SU W C,et al. Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal:A study from the Lincang Ge deposit,Yunnan,China[J]. Science in China Series D:Earth Sciences,2004,47(11):973−984. doi: 10.1360/02yc0141
|
[42] |
樊金云,牛丽,池海,等. (2013). 内蒙古自治区鄂温克族自治旗五牧场锗矿资源评价报告[R]. 内蒙古:内蒙古自治区煤田地质局109勘探队.
|
[43] |
黄少青,张建强,霍超,等. 热液对五牧场矿区煤中锗富集影响的探讨[J]. 中国煤炭地质,2017,29(4):12−17. doi: 10.3969/j.issn.1674-1803.2017.04.03
HUANG Shaoqing,ZHANG Jianqiang,HUO Chao,et al. Discussion on germanium enrichment in coal impacted by hydrothermal solution in wumuchang minefield[J]. Coal Geology of China,2017,29(4):12−17. doi: 10.3969/j.issn.1674-1803.2017.04.03
|
[44] |
魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查模型[J]. 地质学报,2024,98(8):2517−2530.
WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration model of coal and strategic metal resourcesin coal-bearing strata[J]. Acta Geologica Sinica,2024,98(8):2517−2530.
|
[45] |
LI X,WEI Y C,CAO D Y,et al. Cooperative exploration model of coal–lithium deposit:A case study of the haerwusu coal–lithium deposit in the jungar coalfield,Inner Mongolia,northern China[J]. Minerals,2024,14(2):179. doi: 10.3390/min14020179
|
[46] |
ZHANG Y,WEI Y C,CAO D Y,et al. Cooperative exploration model of coal–gallium deposit:A case study of the Heidaigou coal–gallium deposit in the jungar coalfield,Inner Mongolia,China[J]. Minerals,2024,14(2):156. doi: 10.3390/min14020156
|
1. |
王涛,孟帆,弋伟斋,田晓月,李睿康,苏彬,刘利涛,罗振敏. 碳酸钾改性干水-六氟丙烷抑制甲烷爆炸特性. 高压物理学报. 2025(04): 79-90 .
![]() | |
2. |
李倓,赵恒泽,李晔,赵艺. 固体废弃物制备矿用防灭火复合凝胶研究进展. 煤炭科学技术. 2024(08): 96-105 .
![]() | |
3. |
杨小龙,徐青云,徐博文,贺雄,冯剑. 矿井瓦斯灾害的防治现状与综合治理浅析. 山西大同大学学报(自然科学版). 2024(05): 95-98 .
![]() |