Citation: | MA Hongwei,ZHANG Ye,WANG Peng,et al. On the academic ideology of “Sorting the gangue is sorting the images”[J]. Coal Science and Technology,2025,53(5):291−300. DOI: 10.12438/cst.2024-1752 |
Coal gangue sorting is the most basic, effective, and important technical measure to improve coal quality. Improving the accuracy and efficiency of coal gangue sorting is a serious challenge faced by coal gangue sorting. In-depth research and analysis have been conducted on the existing intelligent sorting systems for coal gangue, including “grabbing sorting”, “fork sorting”, and “pneumatic sorting”. The academic thought of “Sorting gangue is sorting images” has been proposed, and the logical framework of the academic ideology of “Sorting gangue is sorting images” has been established. The basic connotation of the academic ideology of “Sorting gangue is sorting images” has been elucidated, mainly including image-based coal gangue recognition, image-based coal gangue sorting feature extraction, image-driven sorting machine dynamic target tracking, and multi-task multi-sorting machine collaboration based on image sequences. Aiming at the problem of image-based coal gangue recognition, a recognition principle and metsorting rates visual images and X-ray images is proposed, which can effectively improve the accuracy of coal gangue recognition; Aiming at the problem of feature extraction in coal gangue image sorting, a plane and depth feature extraction and fusion algorithm based on coal gangue images is proposed. A coal gangue sorting cube is constructed, which can improve the accuracy of coal gangue sorting; An image-based coal gangue matching tracking and path planning method is proposed for dynamic coal gangue tracking, which can improve the accuracy and reliability of sorting; Aiming at the problem of intelligent collaborative sorting of multiple sorters, it is proposed to construct a comprehensive benefit function of sorters based on the coal gangue image information database to achieve optimal allocation of multiple tasks for multiple sorters, and to integrate reinforcement learning methods to achieve intelligent collaborative control of multiple sorters and optimal configuration of the number of sorters. This can effectively improve the sorting efficiency of the multiple-sorter system. Following the academic ideology of “Sorting gangue is sorting images”, our team independently developed a double robotic arm truss type coal gangue sorting robot experimental platform, which verified the correctness and feasibility of this academic ideology and successfully applied it in Yuhua Coal Mine of Tongchuan Mining Company. The academic ideology that “Sorting the gangue is sorting the images” has laid a theoretical foundation for solving the problems of intelligent, precise, and efficient coal gangue sorting.
[1] |
权春锋,马利云. 基于X射线的高含矸煤一体化干法选煤技术研究[J]. 矿山机械,2020,48(4):73−76. doi: 10.3969/j.issn.1001-3954.2020.04.016
QUAN Chunfeng,MA Liyun. Study on integrated dry coal preparation technology of high gangue coal based on X-ray[J]. Mining & Processing Equipment,2020,48(4):73−76. doi: 10.3969/j.issn.1001-3954.2020.04.016
|
[2] |
马宏伟,张烨,王鹏,等. 多机械臂煤矸石智能分拣机器人关键共性技术研究[J]. 煤炭科学技术,2023,51(1):427−436.
MA Hongwei,ZHANG Ye,WANG Peng,et al. Research on key generic technology of multi-arm intelligent coal gangue sorting robot[J]. Coal Science and Technology,2023,51(1):427−436.
|
[3] |
赵子文,金永,陈友兴,等. 基于改进YOLVOv5s的X射线图像粘接缺陷实时检测[J]. 国外电子测量技术,2023,42(4):181−186.
ZHAO Ziwen,JIN Yong,CHEN Youxing,et al. Real-time detection of adhesive defects in X-ray images based on improved YOLVOv5s[J]. Foreign Electronic Measurement Technology,2023,42(4):181−186.
|
[4] |
申利飞,田子建,白林绪. 改进纹理模糊筛选下煤矸石X射线图像处理[J]. 激光与红外,2022,52(7):1090−1097. doi: 10.3969/j.issn.1001-5078.2022.07.023
SHEN Lifei,TIAN Zijian,BAI Linxu. X-ray image processing of coal gangue under improved texture fuzzy screening[J]. Laser & Infrared,2022,52(7):1090−1097. doi: 10.3969/j.issn.1001-5078.2022.07.023
|
[5] |
来文豪,周孟然,王锦国,等. 多光谱波段筛选的煤矸石快速定位[J]. 中国激光,2021,48(16):1611001. doi: 10.3788/CJL202148.1611001
LAI Wenhao,ZHOU Mengran,WANG Jinguo,et al. Fast location of coal gangue based on multispectral band selection[J]. Chinese Journal of Lasers,2021,48(16):1611001. doi: 10.3788/CJL202148.1611001
|
[6] |
张红,李晨阳. 基于光学图像的煤矸石识别方法综述[J]. 煤炭工程,2022,54(7):159−163.
ZHANG Hong,LI Chenyang. Review on coal gangue identification methods based on optical images[J]. Coal Engineering,2022,54(7):159−163.
|
[7] |
马宏伟,周文剑,王鹏,等. 改进的ORB-FLANN煤矸石图像高效匹配方法[J]. 煤炭科学技术,2024,52(1):288−296. doi: 10.12438/j.cnki.cst.2023-1550
MA Hongwei,ZHOU Wenjian,WANG Peng,et al. Improved ORB-FLANN efficient matching method for coal gangue image[J]. Coal Science and Technology,2024,52(1):288−296. doi: 10.12438/j.cnki.cst.2023-1550
|
[8] |
范振,陈乃建,黄玉林,等. 基于支持向量机与多种特征的煤矸石识别[J]. 济南大学学报(自然科学版),2021,35(3):277−284.
FAN Zhen,CHEN Naijian,HUANG Yulin,et al. Coal gangue identification based on support vector machine and multi-features[J]. Journal of University of Jinan (Science and Technology),2021,35(3):277−284.
|
[9] |
巩师鑫,赵国瑞,王飞. 机器视觉感知理论与技术在煤炭工业领域应用进展综述[J]. 工矿自动化,2023,49(5):7−21.
GONG Shixin,ZHAO Guorui,WANG Fei. Review on the application of machine vision perception theory and technology in coal industry[J]. Journal of Mine Automation,2023,49(5):7−21.
|
[10] |
张烨,马宏伟,王鹏,等. 煤矸石智能分拣机器人研究进展与关键技术[J]. 工矿自动化,2022,48(12):42−48,56.
ZHANG Ye,MA Hongwei,WANG Peng,et al. Research progress and key technologies of intelligent coal-gangue sorting robot[J]. Journal of Mine Automation,2022,48(12):42−48,56.
|
[11] |
赵明辉. 双臂并联煤矸石分拣机器人及其轨迹规划研究[J]. 工矿自动化,2020,46(9):57−63.
ZHAO Minghui. Research on dual-arm parallel coal gangue sorting robot and its trajectory planning[J]. Industry and Mine Automation,2020,46(9):57−63.
|
[12] |
曹现刚,李宁,王鹏,等. 基于比例导引法的机械臂拣矸过程轨迹规划方法研究[J]. 煤炭工程,2019,51(5):154−158.
CAO Xiangang,LI Ning,WANG Peng,et al. Research and simulation on priority and path planning of manipulator gangue picking[J]. Coal Engineering,2019,51(5):154−158.
|
[13] |
马宏伟,孙那新,张烨,等. 煤矸石分拣机器人动态目标稳定抓取轨迹规划[J]. 工矿自动化,2022,48(4):20−30.
MA Hongwei,SUN Naxin,ZHANG Ye,et al. Track planning of coal gangue sorting robot for dynamic target stable grasping[J]. Journal of Mine Automation,2022,48(4):20−30.
|
[14] |
王鹏,曹现刚,马宏伟,等. 基于余弦定理-PID的煤矸石分拣机器人动态目标稳准抓取算法[J]. 煤炭学报,2020,45(12):4240−4247.
WANG Peng,CAO Xiangang,MA Hongwei,et al. Dynamic target steady and accurate grasping algorithm of gangue sorting robot based on cosine theorem-PID[J]. Journal of China Coal Society,2020,45(12):4240−4247.
|
[15] |
MA H W,WEI X R,WANG P,et al. Multi-arm global cooperative coal gangue sorting method based on improved Hungarian algorithm[J]. Sensors,2022,22(20):7987. doi: 10.3390/s22207987
|
[16] |
曹现刚,吴旭东,王鹏,等. 面向煤矸分拣机器人的多机械臂协同策略[J]. 煤炭学报,2019,44(S2):763−774.
CAO Xiangang,WU Xudong,WANG Peng,et al. Multi-manipulator cooperation strategy for coal gangue sorting robot[J]. Journal of China Coal Society,2019,44(S2):763−774.
|
[17] |
曹现刚,费佳浩,王鹏,等. 基于多机械臂协同的煤矸分拣方法研究[J]. 煤炭科学技术,2019,47(4):7−12.
CAO Xiangang,FEI Jiahao,WANG Peng,et al. Study on coal-gangue sorting method based on multi-manipulator collaboration[J]. Coal Science and Technology,2019,47(4):7−12.
|
[18] |
王鹏,曹现刚,夏晶,等. 基于机器视觉的多机械臂煤矸石分拣机器人系统研究[J]. 工矿自动化,2019,45(9):47−53.
WANG Peng,CAO Xiangang,XIA Jing,et al. Research on multi-manipulator coal and gangue sorting robot system based on machine vision[J]. Industry and Mine Automation,2019,45(9):47−53.
|
[19] |
巩文迪,卢兆林,唐全,等. 灰度自适应边缘检测在煤矸石分选中的应用[J]. 煤炭技术,2013,32(10):95−96. doi: 10.3969/j.issn.1008-8725.2013.10.053
GONG Wendi,LU Zhaolin,TANG Quan,et al. Application of gray adaptive edge detection in gangue sorting[J]. Coal Technology,2013,32(10):95−96. doi: 10.3969/j.issn.1008-8725.2013.10.053
|
[20] |
于国防,邹士威,秦聪. 图像灰度信息在煤矸石自动分选中的应用研究[J]. 工矿自动化,2012,38(2):36−39.
YU Guofang,ZOU Shiwei,QIN Cong. Application research of image gray information in automatic separation of coal and gangue[J]. Industry and Mine Automation,2012,38(2):36−39.
|
[21] |
曹现刚,李莹,王鹏,等. 煤矸石识别方法研究现状与展望[J]. 工矿自动化,2020,46(1):38−43.
CAO Xiangang,LI Ying,WANG Peng,et al. Research status of coal-gangue identification method and its prospect[J]. Industry and Mine Automation,2020,46(1):38−43.
|
[22] |
陈立,杜文华,曾志强,等. 基于小波变换的煤矸石自动分选方法[J]. 工矿自动化,2018,44(12):60−64.
CHEN Li,DU Wenhua,ZENG Zhiqiang,et al. Automatic separation method of coal and gangue based on wavelet transform[J]. Industry and Mine Automation,2018,44(12):60−64.
|
[23] |
马宪民. 一种基于小波变换的煤矸石图像边缘检测方法[J]. 仪器仪表学报,2006,27(S3):2130−2131. doi: 10.3321/j.issn:0254-3087.2006.z3.144
MA Xianmin. Edge detection based on wavelet transform for coal gangue image[J]. Chinese Journal of Scientific Instrument,2006,27(S3):2130−2131. doi: 10.3321/j.issn:0254-3087.2006.z3.144
|
[24] |
何敏,王培培,蒋慧慧. 基于SVM和纹理的煤和煤矸石自动识别[J]. 计算机工程与设计,2012,33(3):1117−1121. doi: 10.3969/j.issn.1000-7024.2012.03.055
HE Min,WANG Peipei,JIANG Huihui. Recognition of coal and stone based on SVM and texture[J]. Computer Engineering and Design,2012,33(3):1117−1121. doi: 10.3969/j.issn.1000-7024.2012.03.055
|
[25] |
饶中钰,吴景涛,李明. 煤矸石图像分类方法[J]. 工矿自动化,2020,46(3):69−73.
RAO Zhongyu,WU Jingtao,LI Ming. Coal-gangue image classification method[J]. Industry and Mine Automation,2020,46(3):69−73.
|
[26] |
孙涛,王宏伟,闫志蕊. 基于卷积神经网络和语义分割混合模型的煤岩识别系统研究[J]. 矿业研究与开发,2022,42(11):179−187.
SUN Tao,WANG Hongwei,YAN Zhirui. Research on coal-rock recognition system based on convolutional neural network and semantic segmentation hybrid model[J]. Mining Research and Development,2022,42(11):179−187.
|
[27] |
蔡秀凡,谢金辰. YOLOv4煤矸石检测方法研究[J]. 煤炭工程,2022,54(8):157−162.
CAI Xiufan,XIE Jinchen. YOLOv4-based detection method of coal and gangue[J]. Coal Engineering,2022,54(8):157−162.
|
[28] |
桂方俊,李尧. 基于CBA-YOLO模型的煤矸石检测[J]. 工矿自动化,2022,48(6):128−133.
GUI Fangjun,LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation,2022,48(6):128−133.
|
[29] |
郜亚松,张步勤,郎利影. 基于深度学习的煤矸石识别技术与实现[J]. 煤炭科学技术,2021,49(12):202−208. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112025
GAO Yasong,ZHANG Buqin,LANG Liying. Coal and gangue recognition technology and implementation based on deep learning[J]. Coal Science and Technology,2021,49(12):202−208. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112025
|
[30] |
司垒,谭超,朱嘉皓,等. 基于X射线图像和激光点云的煤矸识别方法[J]. 仪器仪表学报,2022,43(9):193−205.
SI Lei,TAN Chao,ZHU Jiahao,et al. A coal-gangue recognition method based on X-ray image and laser point cloud[J]. Chinese Journal of Scientific Instrument,2022,43(9):193−205.
|
[31] |
刘辉,张春波,卢进南,等. 基于激光三角法的煤矸石装载体积测量方法[J]. 激光技术,2021,45(5):630. doi: 10.7510/jgjs.issn.1001-3806.2021.05.016
LIU Hui,ZHANG Chunbo,LU Jinnan,et al. Coal gangue loading volume measurement method based on laser triangulation[J]. Laser Technology,2021,45(5):630. doi: 10.7510/jgjs.issn.1001-3806.2021.05.016
|
[32] |
赵艳秋. 基于X射线探测技术的煤矸光电识别机理及实验研究[D]. 淮南:安徽理工大学,2023.
ZHAO Yanqiu. Mechanism and experimental study on photoelectric identification of coal gangue based on X-ray detection technology[D]. Huainan:Anhui University of Science & Technology,2023.
|
[33] |
方正,李光磊. 基于X射线吸收光谱的煤矸石鉴别[J]. 华中科技大学学报(自然科学版),2024,52(9):63−68.
FANG Zheng,LI Guanglei. Identification of coal gangue based on X-ray absorption spectroscopy[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2024,52(9):63−68.
|
[34] |
李轶锟,吴庆宪,丁晟辉,等. 基于TLD和fDSST的长时间目标跟踪算法[J]. 电光与控制,2019,26(4):44.
LI Yikun,WU Qingxian,DING Shenghui,et al. A long-term tracking algorithm based on TLD and fDSST[J]. Electronics Optics & Control,2019,26(4):44.
|
[35] |
余铎,王耀南,毛建旭,等. 基于视觉的移动机器人目标跟踪方法[J]. 仪器仪表学报,2019,40(1):227−235.
YU Duo,WANG Yaonan,MAO Jianxu,et al. Vision-based object tracking method of mobile robot[J]. Chinese Journal of Scientific Instrument,2019,40(1):227−235.
|
[36] |
张玉涛,张梦凡,史学强,等. 基于深度学习的井下运动目标跟踪算法研究[J]. 煤炭工程,2022,54(10):151−155.
ZHANG Yutao,ZHANG Mengfan,SHI Xueqiang,et al. Object tracking algorithm of moving objects in underground mine based on deep learning[J]. Coal Engineering,2022,54(10):151−155.
|
[37] |
张旭辉,闫建星,张超,等. 基于改进YOLOv5s+DeepSORT的煤块行为异常识别[J]. 工矿自动化,2022,48(6):77−86,117.
ZHANG Xuhui,YAN Jianxing,ZHANG Chao,et al. Coal block abnormal behavior identification based on improved YOLOv5s + DeepSORT[J]. Journal of Mine Automation,2022,48(6):77−86,117.
|
[38] |
仇祝令,查宇飞,朱鹏,等. 基于孪生神经网络在线判别特征的视觉跟踪算法[J]. 光学学报,2019,39(9):0915003. doi: 10.3788/AOS201939.0915003
QIU Zhuling,ZHA Yufei,ZHU Peng,et al. Visual tracking algorithm based on online feature discrimination with Siamese network[J]. Acta Optica Sinica,2019,39(9):0915003. doi: 10.3788/AOS201939.0915003
|
[39] |
陈云芳,吴懿,张伟. 基于孪生网络结构的目标跟踪算法综述[J]. 计算机工程与应用,2020,56(6):10−18. doi: 10.3778/j.issn.1002-8331.1911-0127
CHEN Yunfang,WU Yi,ZHANG Wei. Survey of target tracking algorithm based on Siamese network structure[J]. Computer Engineering and Applications,2020,56(6):10−18. doi: 10.3778/j.issn.1002-8331.1911-0127
|
[40] |
ZHANG Y,MA H W,WANG P,et al. Research on dynamic target steady and quasi-grasping method of coal gangue sorting robot based on global planning and local vision[J]. International Journal of Coal Preparation and Utilization,2024:1−20.
|
[41] |
李亚坤,马宏伟,王鹏. 基于VGG_16网络的煤和矸石识别技术研究[J]. 煤炭技术,2022,41(9):156−159.
LI Yakun,MA Hongwei,WANG Peng. Research on coal and gangue recognition technology based on VGG_16 network[J]. Coal Technology,2022,41(9):156−159.
|
[42] |
WANG P,MA H W,ZHANG Y,et al. Trajectory planning for coal gangue sorting robot tracking fast-mass target under multiple constraints[J]. Sensors,2023,23(9):4412. doi: 10.3390/s23094412
|
[1] | WANG Dong, XING Xiaoyu, YIN Li, WANG Shougong, KONG Lingwei, MENG Xiangyu. Research on 3D stability algorithm of potential sliding body in surface mining in confined space[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(1): 133-144. DOI: 10.12438/cst.2024-0756 |
[2] | XIE Jiacheng, ZHENG Ziying, WANG Xuewen, MENG Hao, LIU Shuguang, LI Suhua. Preliminary research on the operation mode of virtual-real integration in fully-mechanized mining face based on industrial metaverse[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(10): 266-279. DOI: 10.13199/j.cnki.cst.2022-1864 |
[3] | ZHANG Xuhui, WEI Qiannan, WANG Miaoyun, ZHANG Yumeng, DU Yuyang, LV Xinyuan. Research on Remote Virtual Control System of Cantilever Roadheader[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(11): 44-51. |
[4] | ZHAO Wei, WANG Liang, CHEN Xiangjun, PAN Rongkun. Analysis of gas adsorption and diffusion characteristics of coal particles in confined space and model adaptation differences[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(9): 146-151. |
[5] | XIE Jiacheng, WANG Xuewen, LI Xiang, YANG Zhaojian. Research status and prospect of virtual reality technology in field of coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (3). |
[6] | LI Mei, SUN Zhenming, LYU Pingyang, CHEN Jinchuan, MAO Shanjun. Study on key technology of multiplayer virtual reality training platform forfully-mechanized coal mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (1). |
[7] | Zhang Xuhui Dong Runlin Ma Hongwei Du Yuyang Mao Qinghua Wang Chuanwei Xue Xusheng Ma Kun, . Study on remote control technology of mine rescue robot based on virtual reality[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (5). |
[8] | Integrated Design of Drilling Rig for Gas Drainage in Underground Mine Based on Virtual Prototype Machine Technology[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (7). |
[9] | Realization and Design on 3D Engine Framework of Virtual Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (7). |