Citation: | LI Dongyin,LI Mingliang,WANG Wen,et al. Mechanical properties of natural gas wellbore structure under non-uniform load[J]. Coal Science and Technology,2025,53(3):400−411. DOI: 10.12438/cst.2024-1727 |
In areas where natural gas and coal resources overlap, the movement of overburden caused by high-intensity coal mining causes radial compression and deformation or even destruction of the natural gas well body structure within the protective coal pillar. The natural gas diffused from the damaged area can easily lead to fire, explosion or personnel poisoning accidents in coal mines. In order to verify the mechanical properties of the natural gas well bore structure under the influence of cross-mining of natural gas and coal, four types of casing and cement ring combination were designed according to the well structure, and the complex radial stress model of natural gas well structure is simplified into a one-way force model. Digital Image Correlation (DIC) technique and RMT-150 rock mechanics instrument were used to carry out radial compression test and DIC test of casing cement ring combination. Finally, the mechanical performance mechanism of wellbore structure is analyzed from the perspective of deformation rates and force transfer laws of different materials. The results showed: The mechanical properties of the well structure with the outermost casing layer are significantly superior to those of the well structure with the outermost cement sheath. The mechanical performance of the well structure is related to the material’s rate of deformation and the principles governing force transmission. When the composite specimen is acted on by external force, the force transmission law gradually decreases from the outside to the inside, and the outermost layer of the specimen receives the largest force. When the outermost layer of the wellbore structure is a cement sheath, the structure as a whole is brittle. Since the deformation rate of the cement sheath is greater than that of the casing, cracks appear at the cement sheath and casing bonding surface. The cement sheath is prone to brittle fracture under tensile stress. When the casing is the outermost layer of the wellbore structure, the whole structure is elastic-plastic. Under the load, the outer casing first undergoes compression deformation, and the inner cement ring produces internal cracks under the extrusion of the casing, but it does not break under the constraint of the casing, and the whole specimen is damaged by radial compression deformation.
[1] |
王文,雷钧祺,任建东,等. 风积沙沉陷区油气管道安全距离控制方法研究[J]. 采矿与安全工程学报,2024,41(4):769−777.
WANG Wen,LEI Junqi,REN Jiandong,et al. Study on control method of safe distance of oil and gas pipeline in aeolian sand subsidence area[J]. China Industrial Economics,2024,41(4):769−777.
|
[2] |
张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118.
ZHANG Suian,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118.
|
[3] |
鲁晓兵,张旭辉,王淑云. 天然气水合物开采相关的安全性研究进展[J]. 中国科学(物理学、力学、天文学),2019,49(3):7−37.
LU Xiaobing,ZHANG Xuhui,WANG Shuyun. Advances on the safety related with natural gas hydrate exploitation[J]. Scientia Sinica Physica,2019,49(3):7−37.
|
[4] |
张美玲,牟立伟,蔺建华. 地层主应力综合计算方法及其在套损预测中的应用[J]. 地球物理学进展,2016,31(3):1281−1288. doi: 10.6038/pg20160348
ZHANG Meiling,MU Liwei,LIN Jianhua. Comprehensive calculation method of formation principal stress and its application in prediction of casing damage[J]. Progress in Geophysics,2016,31(3):1281−1288. doi: 10.6038/pg20160348
|
[5] |
DOUGHERTY H,WATKINS E,KIMUTIS R. A network model analysis of an unconventional gas well breach above an underground coal mine[J]. Mining,Metallurgy & Exploration,2023,40(6):2161−2166.
|
[6] |
SHI C S,WANG A,ZHU X H,et al. Casing shear deformation mechanism and prevention measures of multifault slip induced by shale gas volume fracturing[J]. Journal of Pipeline Systems Engineering and Practice,2023,14(4):04023035. doi: 10.1061/JPSEA2.PSENG-1370
|
[7] |
MENG H,GE H K,YAO Y,et al. A new insight into casing shear failure induced by natural fracture and artificial fracture slip[J]. Engineering Failure Analysis,2022,137:106287. doi: 10.1016/j.engfailanal.2022.106287
|
[8] |
韩建增,张先普. 非均匀载荷作用下套管抗挤强度初探[J]. 钻采工艺,2001,24(3):48−50. doi: 10.3969/j.issn.1006-768X.2001.03.016
HAN Jianzeng,ZHANG Xianpu. Discussion of casing collapsing strength under non-uniform loading[J]. Drilling & Production Technology,2001,24(3):48−50. doi: 10.3969/j.issn.1006-768X.2001.03.016
|
[9] |
郑俊德,张艳秋,王文军,等. 非均匀载荷下套管强度的计算[J]. 石油学报,1998,19(1):129−133,10.
ZHENG Junde,ZHANG Yanqiu,WANG Wenjun,et al. Calculation of casing strength under non-uniform load[J]. Acta Petrolei Sinica,1998,19(1):129−133,10.
|
[10] |
殷有泉,李平恩. 非均匀载荷下套管强度的计算[J]. 石油学报,2007,28(6):138−141,146. doi: 10.3321/j.issn:0253-2697.2007.06.029
YIN Youquan,LI Ping’en. Computation of casing strength under non-uniform load[J]. Acta Petrolei Sinica,2007,28(6):138−141,146. doi: 10.3321/j.issn:0253-2697.2007.06.029
|
[11] |
石娜. 断层因压差作用滑移机理及引发套损分析[J]. 油气田地面工程,2010,29(5):23−24.
SHI Na. Slip mechanism caused by pressure difference of faults and casing damage analysis[J]. Oil-Gasfield Surface Engineering,2010,29(5):23−24.
|
[12] |
肖志强,贾陆锋,温曹轩,等. 非均匀地应力作用下套管−水泥环组合体抗挤强度模型及优化[J]. 长江大学学报(自然科学版),2020,17(1):39−44,5−6.
XIAO Zhiqiang,JIA Lufeng,WEN Caoxuan,et al. Analysis of the collapsing strength model and its optimization of casing and cement sheath combination under non-uniform in situ stress[J]. Journal of Yangtze University (Natural Science Edition),2020,17(1):39−44,5−6.
|
[13] |
林元华,邓宽海,曾德智,等. 套管在单轴压缩载荷下的失效规律[J]. 天然气工业,2016,36(1):99−105.
LIN Yuanhua,DENG Kuanhai,ZENG Dezhi,et al. Casing failure laws under uniaxial compressive load[J]. Natural Gas Industry,2016,36(1):99−105.
|
[14] |
姬丙寅,余夫,罗蒙,等. 非均匀载荷下页岩气套管抗挤强度全尺寸试验及新机理[J]. 石油机械,2023,51(9):148−154.
JI Bingyin,YU Fu,LUO Meng,et al. Full-scale test and new mechanism on collapsing strength of shale gas casing under nonuniform load[J]. China Petroleum Machinery,2023,51(9):148−154.
|
[15] |
王旭东,武书军,任玺宁,等. 煤层采动对天然气井水泥环影响规律研究[J/OL]. 煤炭科学技术,1−11[2024−10−24]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240902.1306.003.html.
WANG Xudong,WU Shujun,REN Xining. Study on the influence law of repeated mining of coal seam groups on cement ring of natural gas wells[J/OL]. Coal Science and Technology,1−11[2024−10−24]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240902.1306.003.html.
|
[16] |
史彪彬,尹飞,陈朝伟,等. 页岩气井套管剪切−挤压−弯曲组合变形反演分析[J]. 石油管材与仪器,2022,8(6):54−59.
SHI Biaobin,YIN Fei,CHEN Chaowei,et al. Inversion analysis and prediction of shear-extrusion-bending combination deformation of casing in shale gas wells[J]. Petroleum Tubular Goods & Instruments,2022,8(6):54−59.
|
[17] |
张平,何昀宾,刘子平,等. 页岩气水平井套管的剪压变形试验与套变预防实践[J]. 天然气工业,2021,41(5):84−91.
ZHANG Ping,HE Yunbin,LIU Ziping,et al. Shear compression deformation test and deformation prevention practice of casing in shale gas horizontal wells[J]. Natural Gas Industry,2021,41(5):84−91.
|
[18] |
王文,杨昆,何云,等. 煤−气交叉开采区天然气井防碰撞预警技术研究[J]. 矿业科学学报,2022,7(4):490−497.
WANG Wen,YANG Kun,HE Yun,et al. A study on collision warning of gas wells in coal-gas cross mining area[J]. Journal of Mining Science and Technology,2022,7(4):490−497.
|
[19] |
杨胜利,张燊,王旭东,等. 煤与天然气协同开采理论与技术构想[J]. 煤炭科学技术,2024,52(4):50−68.
YANG Shengli,ZHANG Shen,WANG Xudong,et al. Theoretical and technological concepts of synergistic coal and natural gas extraction[J]. Coal Science and Technology,2024,52(4):50−68.
|
[20] |
袁光杰,王向阳,乔磊,等. 页岩气井压裂套管变形机理及物理模拟分析[J]. 天然气工业,2023,43(11):137−145. doi: 10.3787/j.issn.1000-0976.2023.11.013
YUAN Guangjie,WANG Xiangyang,QIAO Lei,et al. Mechanism of casing deformation induced by shale gas well fracturing and its physical simulation analysis[J]. Natural Gas Industry,2023,43(11):137−145. doi: 10.3787/j.issn.1000-0976.2023.11.013
|
[21] |
WU T J,LI M,LIU N N,et al. Research on mechanism of non-uniform in situ stress induced casing damage based on finite element analysis[J]. Applied Sciences,2024,14(14):5987. doi: 10.3390/app14145987
|
[22] |
王晓. 压裂工况下套管受力分析及应力分布数值模拟研究[D]. 大庆:东北石油大学,2023:21−23.
WANG Xiao. Numerical simulation study of casing stress analysis and stress distribution under fracturing conditions[D]. Daqing:Northeast Petroleum University,2023:21−23.
|
[23] |
国家质量监督检验检疫总局,中国国家标准化管理委员会. 油井水泥:GB/T 10238—2015[S]. 北京:中国标准出版社,2016.
|
[24] |
HA K,KANG M Y,KWON D,et al. Application of 3D digital image correlation technique to measurement of wind blade properties from coupon test and small-sized-blade frequency test[J]. Energies,2024,17(4):909. doi: 10.3390/en17040909
|
[25] |
何新党,周润,刘欢,等. 数字图像相关方法在实验力学教学中的应用[J]. 实验室研究与探索,2023,42(9):163−167.
HE Xindang,ZHOU Run,LIU Huan,et al. Application of digital image correlation method in experimental mechanics teaching[J]. Research and Exploration in Laboratory,2023,42(9):163−167.
|
[26] |
国家质量监督检验检疫总局,中国国家标准化管理委员会. 油井水泥试验方法:GB/T 19139—2012[S]. 北京:中国标准出版社,2013.
|
[27] |
LI Z H,XU J T,MIAO X,et al. Effect of graphene oxide on the hydration and strength properties of oil well cement[J]. Fullerenes,Nanotubes and Carbon Nanostructures,2024,32(1):34−42. doi: 10.1080/1536383X.2023.2260509
|
[28] |
韩卫忠,卢岩,张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报,2023,59(3):335−348. doi: 10.11900/0412.1961.2022.00400
HAN Weizhong,LU Yan,ZHANG Yuheng. Mechanism of ductile-to-brittle transition in body-centered-cubic metals:A brief review[J]. Acta Metallurgica Sinica,2023,59(3):335−348. doi: 10.11900/0412.1961.2022.00400
|
[29] |
BARRÍA J C,VÁZQUEZ A,PEREIRA J M,et al. Effect of bacterial nanocellulose on the fresh and hardened states of oil well cement[J]. Journal of Petroleum Science and Engineering,2021,199:108259. doi: 10.1016/j.petrol.2020.108259
|
[30] |
龚伟安. 再论不均壁厚圆管的弹性失稳问题[J]. 石油钻采工艺,1997,19(4):21−28,106.
GONG Weian. Study second time on loss of stability of thick circular pipe of non-uniform wall thickness[J]. Oil Drilling & Production Technology,1997,19(4):21−28,106.
|