Citation: | XING Youwang,LI Mingzhong,ZHANG Jinhu,et al. Study on roof deflection distribution of ultra-long working faces based on matrix displacement method[J]. Coal Science and Technology,2025,53(5):39−51. DOI: 10.12438/cst.2024-1714 |
To investigate the effects of roof conditions, sidewall conditions, and support conditions on roof deflection variations in ultra-long working faces, and to apply beam model theory to hydraulic support design, this study is based on the ultra-long working face 132202 of Xiaobaodang No.2 Mine. A two-dimensional continuous beam model supported on elastic supports was established, reflecting the relationships among hydraulic supports, sidewalls, and roofs in actual production. Using the displacement method, beam model elements were encoded, and the element stiffness matrix for each beam segment was calculated. By employing the element assembly method, the global stiffness matrix and equivalent nodal loads of the ultra-long beam model with elastic supports were computed. Through the matrix displacement method, the global deflection distribution of the beam and the end forces of beam elements were derived, enabling the calculation of support reaction forces. Parametric analyses were conducted on variables such as support width, number of supports, equivalent stiffness, working face length, sidewall stiffness, roof elastic modulus, moment of inertia, and loads induced by adjacent strata. Their impacts on the global deflection distribution were examined. A cubic polynomial was used to precisely fit the initial-to-peak segment of the deflection curve on one side. Validation was performed using results from 3DEC numerical simulations incorporating pile structural elements for support, alongside field monitoring data from electro-hydraulic control systems. The validation confirmed consistency among theoretical calculations, numerical simulations, and field data, demonstrating that the 2D beam model reasonably explains the tri-peak loading characteristics observed in ultra-long working faces. Additionally, the deflection curve from the edge of the working face to the adjacent peak value aligns with a cubic polynomial distribution. This study deepens the application of beam models in mining and provides guidance for hydraulic support design in ultra-long working faces.
[1] |
崔卫秀,穆润青,解鸿章,等. 500 m超长工作面刮板智能输送技术研究[J]. 煤炭科学技术,2024,52(4):326−335. doi: 10.12438/cst.2023-0739
CUI Weixiu,MU Runqing,XIE Hongzhang,et al. Research on intelligent conveying technology of 500 m ultra-long face scraper[J]. Coal Science and Technology,2024,52(4):326−335. doi: 10.12438/cst.2023-0739
|
[2] |
王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践:纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1−18.
WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:Commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1−18.
|
[3] |
袁智,蒋庆友,庞振忠. 我国煤矿智能化综采开采技术装备应用现状与发展思考[J]. 煤炭科学技术,2024,52(9):189−198. doi: 10.12438/cst.2024-1054
YUAN Zhi,JIANG Qingyou,PANG Zhenzhong. Application status and development thinking of intelligent mining technology and equipment in coal mines in China[J]. Coal Science and Technology,2024,52(9):189−198. doi: 10.12438/cst.2024-1054
|
[4] |
李明忠,赵文革,闫汝瑜,等. 超高与超长工作面高效综采关键技术及装备发展现状与展望[J]. 煤炭科学技术,2024,52(9):199−209. doi: 10.12438/cst.2024-0908
LI Mingzhong,ZHAO Wenge,YAN Ruyu,et al. Development status and prospect on key technical equipment of high efficiency fully mechanized mining in super high and super long working face[J]. Coal Science and Technology,2024,52(9):199−209. doi: 10.12438/cst.2024-0908
|
[5] |
丁彦雄,张金虎,李明忠,等. 中厚煤层超长工作面大中心距超强力液压支架优化设计[J]. 煤炭技术,2022,41(6):168−170.
DING Yanxiong,ZHANG Jinhu,LI Mingzhong,et al. Optimal design of super strong hydraulic support with large center distance in super long working face of medium thick coal seam[J]. Coal Technology,2022,41(6):168−170.
|
[6] |
杨征,李明忠,刘前进,等. 450 m超长工作面矿压显现与地表移动变形规律研究[J]. 煤炭工程,2023,55(2):63−68.
YANG Zheng,LI Mingzhong,LIU Qianjin,et al. Mine pressure behavior and surface movement and deformation law of 450 m super-long working face[J]. Coal Engineering,2023,55(2):63−68.
|
[7] |
张金虎,李明忠,胡健,等. 超长工作面布置方式优化设计与设备选型配套[J]. 煤炭工程,2021,53(7):7−10.
ZHANG Jinhu,LI Mingzhong,HU Jian,et al. Optimized design of super-long working face layout and the equipment selection and matching[J]. Coal Engineering,2021,53(7):7−10.
|
[8] |
王家臣,王兆会,唐岳松,等. 千米深井超长工作面顶板分区破断驱动机制与围岩区域化控制研究[J]. 煤炭学报,2023,48(10):3615−3627.
WANG Jiachen,WANG Zhaohui,TANG Yuesong,et al. Regional failure mechanism of main roof and zonal method for ground control in kilometer-deep longwall panel with large face length[J]. Journal of China Coal Society,2023,48(10):3615−3627.
|
[9] |
王家臣,杨胜利,杨宝贵,等. 深井超长工作面基本顶分区破断模型与支架阻力分布特征[J]. 煤炭学报,2019,44(1):54−63.
WANG Jiachen,YANG Shengli,YANG Baogui,et al. Roof sub-regional fracturing and support resistance distribution in deep longwall face with ultra-large length[J]. Journal of China Coal Society,2019,44(1):54−63.
|
[10] |
王兆会,唐岳松,李辉,等. 千米深井超长工作面支架阻力分布特征及影响因素研究[J]. 采矿与安全工程学报,2023,40(1):1−10.
WANG Zhaohui,TANG Yuesong,LI Hui,et al. Distribution and influence factors of support resistance in longwall panel with large face length of a kilometer-deep coal mine[J]. Journal of Mining & Safety Engineering,2023,40(1):1−10.
|
[11] |
陈冬冬,谢生荣,何富连,等. 长边采空(煤柱)弹性基础边界基本顶薄板破断规律[J]. 采矿与安全工程学报,2018,35(6):1191−1199.
CHEN Dongdong,XIE Shengrong,HE Fulian,et al. Fracture rule of main roof thin plate with the elastic foundation boundary and long side coal pillar[J]. Journal of Mining & Safety Engineering,2018,35(6):1191−1199.
|
[12] |
肖剑儒,满洋,陈建华. 浅埋煤层工作面长度确定及覆岩稳定性研究[J]. 煤炭工程,2021,53(11):120−124.
XIAO Jianru,MAN Yang,CHEN Jianhua. Study on mining face length and overburden stability control of shallow coal seam[J]. Coal Engineering,2021,53(11):120−124.
|
[13] |
王新丰,陆明远. 深部变面长采场顶板破断演化的力学机制分析[J]. 煤田地质与勘探,2022,50(10):1−15. doi: 10.12363/issn.1001-1986.22.03.0115
WANG Xinfeng,LU Mingyuan. Study on mechanical mechanism of roof fracture evolution in deep stope with variable face length[J]. Coal Geology & Exploration,2022,50(10):1−15. doi: 10.12363/issn.1001-1986.22.03.0115
|
[14] |
徐亚军,王国法. 液压支架群组支护原理与承载特性[J]. 岩石力学与工程学报,2017,36(S1):3367−3373.
XU Yajun,WANG Guofa. Principle and bearing characteristics of hydraulic support group support[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(S1):3367−3373.
|
[15] |
宋立兵,王庆雄. 国内首个450 m超长综采工作面安全开采技术研究[J]. 煤炭工程,2014,46(3):45−47,51. doi: 10.11799/ce201403015
SONG Libing,WANG Qingxiong. Study on safety mining technology of China first 450 m ultra long fully mechanized coal mining face[J]. Coal Engineering,2014,46(3):45−47,51. doi: 10.11799/ce201403015
|
[16] |
王庆雄,鞠金峰. 450 m超长综采工作面矿压显现规律研究[J]. 煤炭科学技术,2014,42(3):125−128.
WANG Qingxiong,JU Jinfeng. Study on mine strata pressure behavior law of 450 m ultra long fully-mechanized coal mining face[J]. Coal Science and Technology,2014,42(3):125−128.
|
[17] |
ZHANG J H,CHENG Z H,XING Y W,et al. Roof stability analysis model of super-long fully mechanized working face and its application[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2024,10(1):189. doi: 10.1007/s40948-024-00908-0
|
[18] |
蔺星宇,徐刚,高晓进,等. 超长工作面支架工作阻力分布及分区增阻特性研究[J]. 煤炭科学技术,2023,51(4):11−20.
LIN Xingyu,XU Gang,GAO Xiaojin,et al. Study on working resistance distribution of support and resistance increasing characteristics of support partition in longwall face with ultra-large length[J]. Coal Science and Technology,2023,51(4):11−20.
|
[19] |
徐亚军,王国法,张金虎,等. 基于弹性独立支座的大采高综采工作面液压支架群组支护应力场理论与应用[J]. 岩石力学与工程学报,2018,37(5):1226−1236.
XU Yajun,WANG Guofa,ZHANG Jinhu,et al. Theory and application of supporting stress fields of hydraulic powered support groups in fully mechanized mining face with large mining height based on elastic supporting beam model[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1226−1236.
|
[20] |
王国法,张金虎,徐亚军,等. 深井厚煤层长工作面支护应力特性及分区协同控制技术[J]. 煤炭学报,2021,46(3):763−773.
WANG Guofa,ZHANG Jinhu,XU Yajun,et al. Supporting stress characteristics and zonal cooperative control technology of long working face in deep thick coal seam[J]. Journal of China Coal Society,2021,46(3):763−773.
|
[21] |
王国法. 液压支架技术[M]. 北京:煤炭工业出版社,1999.
|
[22] |
曾庆良,徐鹏辉,孟昭胜,等. 冲击载荷下四柱支撑掩护式液压支架动态响应特征分析[J]. 煤炭科学技术,2023,51(1):437−445.
ZENG Qingliang,XU Penghui,MENG Zhaosheng,et al. Dynamic response characteristics analysis of four column chock shield support under impact load[J]. Coal Science and Technology,2023,51(1):437−445.
|
[23] |
安栋,陈征,宋义敏,等. 冲击地压矿井巷道吸能防冲液压支架防冲效果研究[J]. 煤炭科学技术,2022,50(11):12−19.
AN Dong,CHEN Zheng,SONG Yimin,et al. Research on energy absorption characteristics and anti-bump effect of anti-bump hydraulic support in rockburst mine roadway[J]. Coal Science and Technology,2022,50(11):12−19.
|
[24] |
李丁一. 液压支架群组刚度与支护应力分布规律研究[D]. 北京:煤炭科学研究总院,2018.
LI Dingyi. Study on the distribution law of group stiffness and support stress of hydraulic support[D]. Beijing:China Coal Research Institute,2018.
|
[25] |
唐静静. 工程力学[M]. 北京:高等教育出版社,2017.
|
[26] |
龙驭球,包世华,匡文起,等. 结构力学-Ⅰ-基本教程[M]. 3版. 北京:高等教育出版社,2012.
|
[27] |
于玲玲. 结构力学[M]. 3版. 北京:中国电力出版社,2021.
|
[28] |
赵延林,郑慧慧. 结构力学[M]. 天津:天津大学出版社,2018.
|
[29] |
双海清,辛越强,李树刚,等. 基于关键层理论的切顶留巷下覆岩裂隙分布特征研究[J]. 煤炭科学技术,2024,52(5):102−113. doi: 10.12438/cst.2023-1368
SHUANG Haiqing,XIN Yueqiang,LI Shugang,et al. Characterization of fissure distribution of overburden rock under roof cutting and entry retaining based on key strata theory[J]. Coal Science and Technology,2024,52(5):102−113. doi: 10.12438/cst.2023-1368
|
[30] |
钱鸣高. 岩层控制的关键层理论[M]. 徐州:中国矿业大学出版社,2000.
|
[31] |
鲁健,尚奇,郭萌,等. 基于3DEC的块体尺寸及形状对再生顶板稳定性影响模拟研究[J]. 中国煤炭,2018,44(3):87−90,115. doi: 10.3969/j.issn.1006-530X.2018.03.017
LU Jian,SHANG Qi,GUO Meng,et al. Simulation study on the effect of block size and shape on the stability of regenerated roof based on 3DEC[J]. China Coal,2018,44(3):87−90,115. doi: 10.3969/j.issn.1006-530X.2018.03.017
|
[32] |
卡巴科弗 Kabacoff,Robert I. ,王韬. R语言实战[M]. 3版. 北京:人民邮电出版社,2023.
|