Citation: | PENG Wenchun,MI Honggang,XU Lifu,et al. Fracability evaluation and classification of deep coal reservoirs in the Shenfu block[J]. Coal Science and Technology,2025,53(3):238−247. DOI: 10.12438/cst.2024-1620 |
The deep coal reservoir resources are abundant in the Shenfu block, and conducting the evaluation of deep coal seam fracability in the whole region is an important foundation to realize effective reservoir reconstruction. The No.8+9 coal seams in the Shenfu block are taken as the research objects. Based on the data of logging, well test and drainage, the mechanical properties and in-situ stress characteristics of deep coal reservoirs are analyzed to establish the evaluation index of reservoir fracability, and different types of reservoirs and their production characteristics are compared and analyzed. The results show that: ① The static Elastic modulus and static Poisson’s radio of No.8+9 coal seams in the research area are 7.5 GPa and 0.35, respectively. And the average dynamic Elastic modulus and dynamic Poisson’s radio of No.8+9 coal seams are 6.3 GPa and 0.37, respectively, with significant regional distribution differences. ② The vertical stress of No. 8+9 coal seams ranges from 25.1 to 54.8 MPa, with an average of 49.1 MPa. The maximum horizontal principal stress ranges from 20.4 to 45.2 MPa, with an average of 39.5 MPa. The minimum horizontal principal stress ranges from 17.5 to 40.8 MPa, with an average of 33.8 MPa. The difference in horizontal principal stress ranges from 2.9 to 6.8 MPa, with an average of 5.7 MPa. ③ The fracability index is calculated by the dynamic Elastic modulus, dynamic tensile strength, dynamic compressive strength, dynamic Poisson's ratio, horizontal principal stress difference of coal, and minimum horizontal principal stress difference between the roof and floor of the coal seam. The fracability index of No.8+9 coal seams is between−12.1−17.6, which can be divided into 6 categories. The No.8+9 coal seams have a wide distribution of Class I, Class II and Class V reservoirs. The development effect of gas wells shows that under other similar conditions, the higher the fracability index, the more complete the transformation of coal reservoirs, and the better the gas production effect. However, the mechanical properties, in-situ stress, and compressibility of deep coal reservoirs in the Shenfu block are distributed in a complex plane, and it is necessary to carefully identify and develop targeted and appropriate fracturing transformation plans for segmented areas. The evaluation method of deep coal reservoir fracability is established to provide a basis and theoretical guidance for reservoir classification and transformation and the efficient development of deep coalbed methane in the study area.
[1] |
朱光辉,季洪泉,米洪刚,等. 神府深部煤层气大气田的发现与启示[J]. 煤田地质与勘探,2024,52(8):12−21. doi: 10.12363/issn.1001-1986.24.02.0089
ZHU Guanghui,JI Hongquan,MI Honggang,et al. Discovery and enlightenment of deep coalbed methane gas field in Shenfu[J]. China Industrial Economics,2024,52(8):12−21. doi: 10.12363/issn.1001-1986.24.02.0089
|
[2] |
吴裕根,门相勇,娄钰. 我国“十四五” 煤层气勘探开发新进展与前景展望[J]. 中国石油勘探,2024,29(1):1−13. doi: 10.3969/j.issn.1672-7703.2024.01.001
WU Yugen,MEN Xiangyong,LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five-Year Plan period[J]. China Petroleum Exploration,2024,29(1):1−13. doi: 10.3969/j.issn.1672-7703.2024.01.001
|
[3] |
李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.
LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.
|
[4] |
闫霞,熊先钺,李曙光,等. 深部煤层气水平井各段产出贡献及其主控因素:以鄂尔多斯盆地东缘大宁—吉县区块为例[J/OL]. 天然气工业,2024:1−13[2024−04−19]. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=TRQG20240416001&dbname=CJFD&dbcode=CJFQ.
YAN Xia,XIONG Xianyue,LI Shuguang,et al. Output contribution and main controlling factors of horizontal wells in deep coalbed methane:Taking Daning-Jixian block in the eastern margin of Ordos Basin as an example[J/OL]. China Industrial Economics,2024:1−13[2024−04−19]. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=TRQG20240416001&dbname=CJFD&dbcode=CJFQ.
|
[5] |
赵志刚,朱学申,王存武,等. 基于资源性与可压性的深部煤层气甜点预测[J]. 煤田地质与勘探,2024,52(8):22−31. doi: 10.12363/issn.1001-1986.24.01.0042
ZHAO Zhigang,ZHU Xueshen,WANG Cunwu,et al. Dessert prediction of deep coalbed methane based on resource and compressibility[J]. China Industrial Economics,2024,52(8):22−31. doi: 10.12363/issn.1001-1986.24.01.0042
|
[6] |
徐凤银,王成旺,熊先钺,等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报,2023,44(11):1764−1780. doi: 10.7623/syxb202311002
XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1764−1780. doi: 10.7623/syxb202311002
|
[7] |
李勇,高爽,吴鹏,等. 深部煤层气游离气含量预测模型评价与校正:以鄂尔多斯盆地东缘深部煤层为例[J]. 石油学报,2023,44(11):1892−1902. doi: 10.7623/syxb202311011
LI Yong,GAO Shuang,WU Peng,et al. Evaluation and correction of prediction model of free gas content in deep coalbed methane:A case study of deep coal seam in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1892−1902. doi: 10.7623/syxb202311011
|
[8] |
米洪刚,吴见,彭文春,等. 神府区块深部煤储层力学特性及裂缝扩展机制[J]. 煤田地质与勘探,2024,52(8):32−43. doi: 10.12363/issn.1001-1986.24.03.0167
MI Honggang,WU Jian,PENG Wenchun,et al. Mechanical characteristics and fracture propagation mechanism of deep coal reservoirs in the Shenfu block[J]. Coal Geology & Exploration,2024,52(8):32−43. doi: 10.12363/issn.1001-1986.24.03.0167
|
[9] |
姚艳斌,王辉,杨延辉,等. 煤层气储层可改造性评价:以郑庄区块为例[J]. 煤田地质与勘探,2021,49(1):119−129. doi: 10.3969/j.issn.1001-1986.2021.01.012
YAO Yanbin,WANG Hui,YANG Yanhui,et al. Evaluation of the hydro-fracturing potential for coalbed methane reservoir:A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration,2021,49(1):119−129. doi: 10.3969/j.issn.1001-1986.2021.01.012
|
[10] |
郭笑笑. 老厂雨旺区煤储层非均质性及可改造性研究[D]. 北京:中国地质大学(北京),2021.
GUO Xiaoxiao. Study on heterogeneity and reconstructability of coal reservoir in Yuwang District of Laochang[D]. Beijing:China University of Geosciences,2021.
|
[11] |
苏育飞,宋儒. 沁水盆地榆社武乡区块深部煤层气地质特征研究及可改造性评价[J]. 中国煤炭地质,2023,35(5):46−57. doi: 10.3969/j.issn.1674-1803.2023.05.07
SU Yufei,SONG Ru. Study on geological characteristics of deep CBM inYushewu block,Qinshui basin and evaluation of transformability[J]. Coal Geology of China,2023,35(5):46−57. doi: 10.3969/j.issn.1674-1803.2023.05.07
|
[12] |
秦勇. 中国深部煤层气地质研究进展[J]. 石油学报,2023,44(11):1791−1811. doi: 10.7623/syxb202311004
QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica,2023,44(11):1791−1811. doi: 10.7623/syxb202311004
|
[13] |
李勇,陈涛,马啸天,等. 煤层顶板间接压裂裂缝扩展机制及影响因素[J]. 煤炭科学技术,2024,52(2):171−182. doi: 10.12438/cst.2023-0910
LI Yong,CHEN Tao,MA Xiaotian,et al. Extension mechanism and influencing factors of indirect fracturing fractures on coal seam roof[J]. Coal Science and Technology,2024,52(2):171−182. doi: 10.12438/cst.2023-0910
|
[14] |
王成旺,甄怀宾,陈高杰,等. 大宁—吉县区块深部8号煤储层特征及可压裂性评价[J]. 中国煤炭地质,2022,34(2):1−5. doi: 10.3969/j.issn.1674-1803.2022.02.01
WANG Chengwang,ZHEN Huaibin,CHEN Gaojie,et al. Assessment of coal No. 8 reservoir features and fracturability in Da' Ning-Jixian Block deep part[J]. Coal Geology of China,2022,34(2):1−5. doi: 10.3969/j.issn.1674-1803.2022.02.01
|
[15] |
米立军,朱光辉. 鄂尔多斯盆地东北缘临兴—神府致密气田成藏地质特征及勘探突破[J]. 中国石油勘探,2021,26(3):53−67.
MI Lijun,ZHU Guanghui. Geological characteristics and exploration breakthrough in Linxing-Shenfu tight gas field,northeastern Ordos Basin[J]. China Petroleum Exploration,2021,26(3):53−67.
|
[16] |
徐长贵,季洪泉,王存武,等. 鄂尔多斯盆地东缘临兴-神府区块深部煤层气富集规律与勘探对策[J]. 煤田地质与勘探,2024,52(8):1−11. doi: 10.12363/issn.1001-1986.24.01.0026
XU Changgui,JI Hongquan,WANG Cunwu,et al. Enrichment patterns and exploration countermeasures of deep coalbed methane in the Linxing-Shenfu block on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(8):1−11. doi: 10.12363/issn.1001-1986.24.01.0026
|
[17] |
郭广山,徐凤银,刘丽芳,等. 鄂尔多斯盆地府谷地区深部煤层气富集成藏规律及有利区评价[J]. 煤田地质与勘探,2024,52(2):81−91. doi: 10.12363/issn.1001-1986.23.08.0521
GUO Guangshan,XU Fengyin,LIU Lifang,et al. Enrichment and accumulation patterns and favorable area evaluation of deep coalbed methane in the Fugu area,Ordos Basin[J]. Coal Geology & Exploration,2024,52(2):81−91. doi: 10.12363/issn.1001-1986.23.08.0521
|
[18] |
张帆,马耕,刘晓,等. 煤岩水力压裂起裂压力和裂缝扩展机制实验研究[J]. 煤田地质与勘探,2017,45(6):84−89. doi: 10.3969/j.issn.1001-1986.2017.06.014
ZHANG Fan,MA Geng,LIU Xiao,et al. Experimental study on initiation pressure and mechanism of fracture propagation of hydraulic fracturing in coal and rock mass[J]. Coal Geology & Exploration,2017,45(6):84−89. doi: 10.3969/j.issn.1001-1986.2017.06.014
|
[19] |
高向东,王延斌,倪小明,等. 临兴地区深部煤岩力学性质及其对煤储层压裂的影响[J]. 煤炭学报,2020,45(S2):912−921.
GAO Xiangdong,WANG Yanbin,NI Xiaoming,et al. Mechanical properties of deep coal and rock in Linxing area and its influence on coal reservoir fracturing[J]. Journal of China Coal Society,2020,45(S2):912−921.
|
[20] |
王晓锋,唐书恒,解慧,等. 沁水盆地南部煤储层水力压裂裂缝发育特征的数值模拟研究[J]. 现代地质,2012,26(3):527−532. doi: 10.3969/j.issn.1000-8527.2012.03.012
WANG Xiaofeng,TANG Shuheng,XIE Hui,et al. Numerical simulation research on propagation of hydraulic fractures of coal reservoir in south Qinshui basin[J]. Geoscience,2012,26(3):527−532. doi: 10.3969/j.issn.1000-8527.2012.03.012
|
[21] |
高亚楠,高峰,谢晶,等. 温度-围压-瓦斯压力作用下煤岩力学性质及有限变形行为[J]. 煤炭学报,2021,46(3):898−911.
GAO Yanan,GAO Feng,XIE Jing,et al. Mechanical properties and finite deformation behavior of coal under temperature,confining pressure and gas pressure[J]. Journal of China Coal Society,2021,46(3):898−911.
|
[22] |
肖光明. 温度与加载速率影响下的煤岩力学行为及强度特性研究[D]. 徐州:中国矿业大学,2022.
XIAO Guangming. Study on mechanical behavior and strength characteristics of coal and rock under the influence of temperature and loading rate[D]. Xuzhou:China University of Mining and Technology,2022.
|
[23] |
WANG Z W,LI Y,QU J H,et al. Detailed in situ stress characterization combining well logging and improved magnitude calculation model of nos. 8+9 coal seam in northeastern Ordos basin[J]. Energy & Fuels,2024,38(6):5137−5148.
|
[24] |
邱峰,刘晋华,蔡益栋,等. 基于测井的煤层力学特性评价及煤层气开发有利区预测:以沁南郑庄区块3号煤层为例[J]. 煤田地质与勘探,2023,51(4):46−56. doi: 10.12363/issn.1001-1986.22.10.0808
QIU Feng,LIU Jinhua,CAI Yidong,et al. Mechanical property evaluation of coal bed and favorable area prediction of coalbed methane (CBM) development based on well logging:A case study of No. 3 coal bed in Zhengzhuang Block,southern Qinshui Basin[J]. Coal Geology & Exploration,2023,51(4):46−56. doi: 10.12363/issn.1001-1986.22.10.0808
|
[25] |
余雄鹰,王越之,李自俊. 声波法计算水平主地应力值[J]. 石油学报,1996,17(3):59−63. doi: 10.3321/j.issn:0253-2697.1996.03.009
YU Xiongying,WANG Yuezhi,LI Zijun. Calculation of horizontal principal in situ stress with acoustic wave method[J]. Acta Petrolei Sinica,1996,17(3):59−63. doi: 10.3321/j.issn:0253-2697.1996.03.009
|
[26] |
鞠玮,王胜宇,姜波,等. 滇东-黔西地区现今地应力场与二叠系煤储层渗透率特征[J]. 煤炭科学技术,2022,50(2):179−186.
JU Wei,WANG Shengyu,JIANG Bo,et al. Characteristics of present-day in situ stress field and the Permian coal reservoir permeability in the eastern Yunnan and western Guizhou regions[J]. Coal Science and Technology,2022,50(2):179−186.
|
[27] |
赖锦,白天宇,肖露,等. 地应力测井评价方法及其地质与工程意义[J]. 石油与天然气地质,2023,44(4):1033−1043. doi: 10.11743/ogg20230418
LAI Jin,BAI Tianyu,XIAO Lu,et al. Well-logging evaluation of in situ stress fields and its geological and engineering significances[J]. Oil & Gas Geology,2023,44(4):1033−1043. doi: 10.11743/ogg20230418
|
[28] |
谢正龙,刘之的,韩鸿来,等. 大吉区块深部(层)煤层气储层地应力测井预测研究[J]. 物探与化探,2024,48(2):356−365.
XIE Zhenglong,LIU Zhidi,HAN Honglai,et al. Log-based in situ stress prediction of deep coalbed methane reservoirs in the Daji block[J]. Geophysical and Geochemical Exploration,2024,48(2):356−365.
|
[29] |
安琦,杨帆,杨睿月,等. 鄂尔多斯盆地神府区块深部煤层气体积压裂实践与认识[J]. 煤炭学报,2024,49(5):2376−2393.
AN Qi,YANG Fan,YANG Ruiyue,et al. Practice and understanding of deep coalbed methane massive hydraulic fracturing in Shenfu Block,Ordos Basin[J]. Journal of China Coal Society,2024,49(5):2376−2393.
|
[30] |
张亚飞,张松航,邓志宇,等. 基于层次分析灰色定权聚类的煤层气开发甜点预测方法:以柿庄北区块为例[J]. 煤炭科学技术,2024,52(5):166−175. doi: 10.12438/cst.2023-0708
ZHANG Yafei,ZHANG Songhang,DENG Zhiyu,et al. A prediction method for coalbed methane development sweet spots based on hierarchical analysis and grey fixed-weight clustering:Taking Shizhuangbei block as an example[J]. Coal Science and Technology,2024,52(5):166−175. doi: 10.12438/cst.2023-0708
|