Advance Search
CHI Xiaolou,WEI Zhonghua,YANG Ke,et al. Experimental study on modification of grouting of broken roof under stratified mining in steeply dipping coal seam[J]. Coal Science and Technology,2025,53(2):27−40. DOI: 10.12438/cst.2024-1471
Citation: CHI Xiaolou,WEI Zhonghua,YANG Ke,et al. Experimental study on modification of grouting of broken roof under stratified mining in steeply dipping coal seam[J]. Coal Science and Technology,2025,53(2):27−40. DOI: 10.12438/cst.2024-1471

Experimental study on modification of grouting of broken roof under stratified mining in steeply dipping coal seam

More Information
  • Received Date: September 27, 2024
  • Available Online: February 21, 2025
  • The study was conducted on modification of grouting of broken roof under stratified mining in a steeply dipping coal seam. Considering the geological conditions of stratified mining in the merged coal seams 3 and 1 at the Pansidong Mine, five types of particle size gradation of grouting reinforcement body models were established, a single-axis compression test based on CT in situ scanning was carried out, and the effects of particle-sized paired reinforcement body strength characteristics, crack evolution, acoustic emission signals and micromorphological characteristics were studied. The study showed that: ① With the increase of particle size grading, defects such as pores and cracks in the reinforcement body are affected by the dislocation of the rock and plasma matrix. Large-scale shear belts have been formed, leading to a gradual decrease in the single-axis pressure resistance of the reinforcement body. The 6~8 mm and 8~10 mm particle size grades of reinforcement body are affected by large particle size rocks, and early stress fluctuations are evident. The form of destruction shows a transition from cross-strait destruction, a combination of slash-slash destruction and a slash destruct. ② With the increase of particle size gradation, the hydrated products (AFt and C–H–S) do not form interlaced network structure to fill the pores between the blocks, which leads to the decrease of the overall strength of the reinforcement body. During the loading process, the end of the rock generates concentrated stress, the cut band increases, the sound emission activity is earlier and more frequent, the high-value vibration count increases and the cumulative vibration count grows faster. ③ The CT scan shows that the main fracture of the reinforcement body occurs mainly at the cementation surface between the rock mass and the grout matrix, and rarely extends through the rock. With the increase of particle size gradation, more small cracks in the reinforcement body expand into large opening cracks, and the number of cracks decreases. After the destruction of 0~2 mm, 4~6 mm and 8~10 mm particle sizes of reinforcement body, the proportion of the crack volume V ≤ 0.01 mm3 decreased by 9.5%, 1.6%, 4.0%, and the proportion of cracks V > 10 mm3 increased by 0.1%, 3.5%, 4.9%. The graying value of the crack increases, and the proportion of the crack volume increases to form a more complex crack network. Based on the test results, the drilling and grouting construction and netting scheme of broken roof are proposed, which provide a theoretical basis for the stable control of broken roof under stratified mining in a steeply dipping coal seam.

  • [1]
    伍永平,郎丁,贠东风,等. 我国大倾角煤层开采技术变革与展望[J]. 煤炭科学技术,2024,52(1):25−51. doi: 10.12438/cst.2023-1601

    WU Yongping,LANG Ding,YUN Dongfeng,et al. Reform and prospects of mining technology for large inclined coal seam in China[J]. Coal Science and Technology,2024,52(1):25−51. doi: 10.12438/cst.2023-1601
    [2]
    杨科,池小楼,刘钦节,等. 大倾角煤层综采工作面再生顶板与支架失稳机理[J]. 煤炭学报,2020,45(9):3045−3053.

    YANG Ke,CHI Xiaolou,LIU Qinjie,et al. Cataclastic regenerated roof and instability mechanism of support in fully mechanized mining face of steeply dipping seam[J]. Journal of China Coal Society,2020,45(9):3045−3053.
    [3]
    池小楼,杨科,付强,等. 大倾角厚煤层走向长壁分层开采再生顶板力学行为与稳定控制[J]. 煤炭科学技术,2023,51(6):1−10.

    CHI Xiaolou,YANG Ke,FU Qiang,et al. Mechanical behavior and stability control of regenerated roof in long wall stratified mining of thick steeply dipping coal seam[J]. Coal Science and Technology,2023,51(6):1−10.
    [4]
    伍永平,解盘石,贠东风,等. 大倾角层状采动煤岩体重力-倾角效应与岩层控制[J]. 煤炭学报,2023,48(1):100−113.

    WU Yongping,XIE Panshi,YUN Dongfeng,et al. Gravity-dip effect and strata control in mining of the steeply dipping coal seam[J]. Journal of China Coal Society,2023,48(1):100−113.
    [5]
    王红伟,焦建强,伍永平,等. 急倾斜厚煤层短壁综放采场承载结构泛化特征[J]. 煤炭科学技术,2021,49(11):56−64.

    WANG Hongwei,JIAO Jianqiang,WU Yongping,et al. Generalization characteristics of bearing structure in short wall fully-mechanized top-coal caving mining face of steeply inclined thick seam[J]. Coal Science and Technology,2021,49(11):56−64.
    [6]
    解盘石,张颖异,张艳丽,等. 大倾角大采高煤矸互层顶板失稳规律及对支架的影响[J]. 煤炭学报,2021,46(2):344−356.

    XIE Panshi,ZHANG Yingyi,ZHANG Yanli,et al. Instability law of the coal-rock interbedded roof and its influence on supports in large mining height working face with steeply dipping coal seam[J]. Journal of China Coal Society,2021,46(2):344−356.
    [7]
    翟晓荣,吴基文,胡儒,等. 分岔煤层下分层再生顶板地面预注浆加固区域研究[J]. 煤炭科学技术,2022,50(11):30−39.

    ZHAI Xiaorong,WU Jiwen,HU Ru,et al. Study on surface pre-grouting reinforcement layer of stratified regenerated roof under bifurcated coal seam[J]. Coal Science and Technology,2022,50(11):30−39.
    [8]
    王平,冯涛,蒋运良,等. 软弱再生顶板巷道围岩失稳机理及其控制原理与技术[J]. 煤炭学报,2019,44(10):2953−2965.

    WANG Ping,FENG Tao,JIANG Yunliang,et al. Control principle and technology and instability mechanism of surrounding rock in weak regenerated roof[J]. Journal of China Coal Society,2019,44(10):2953−2965.
    [9]
    勒治华,于庆磊,杨天鸿,等. 侧限条件下充填散体压缩承载和传力特性[J]. 岩土力学,2022,43(S2):362−372.

    LE Zhihua,YU Qinglei,YANG Tianhong,et al. Compressive bearing and force transmission characteristics of granular backfill under lateral confinement[J]. Rock and Soil Mechanics,2022,43(S2):362−372.
    [10]
    冯梅梅,吴疆宇,陈占清,等. 连续级配饱和破碎岩石压实特性试验研究[J]. 煤炭学报,2016,41(9):2195−2202.

    FENG Meimei,WU Jiangyu,CHEN Zhanqing,et al. Experimental study on the compaction of saturated broken rock of continuous gradation[J]. Journal of China Coal Society,2016,41(9):2195−2202.
    [11]
    李樯,马丹,张吉雄,等. 断层带破碎岩体采动剪切变形与渗透性演化规律[J]. 煤田地质与勘探,2023,51(8):150−160. doi: 10.12363/issn.1001-1986.23.01.0022

    LI Qiang,MA Dan,ZHANG Jixiong,et al. Mining-induced shear deformation and permeability evolution law of crushed rock mass in fault zone[J]. Coal Geology & Exploration,2023,51(8):150−160. doi: 10.12363/issn.1001-1986.23.01.0022
    [12]
    吴疆宇,靖洪文,浦海,等. 分形矸石胶结充填体的宏细观力学特性[J]. 岩石力学与工程学报,2021,40(10):2083−2100.

    WU Jiangyu,JING Hongwen,PU Hai,et al. Macroscopic and mesoscopic mechanical properties of cemented waste rock backfill using fractal gangue[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(10):2083−2100.
    [13]
    杨科,张继强,何祥,等. 多源煤基固废胶结充填体力学及变形破坏特征试验研究[J]. 煤田地质与勘探,2024,52(6):102−114. doi: 10.12363/issn.1001-1986.24.03.0188

    YANG Ke,ZHANG Jiqiang,HE Xiang,et al. Experimental study on the mechanics and deformation failure characteristics of multi-source coal-based solid waste cemented backfill[J]. Coal Geology & Exploration,2024,52(6):102−114. doi: 10.12363/issn.1001-1986.24.03.0188
    [14]
    冯国瑞,马敬凯,李竹,等. 破碎围岩注浆加固体承载特性与损伤破坏机制[J]. 煤炭学报,2023,48(S2):411−423.

    FENG Guorui,MA Jingkai,LI Zhu,et al. Bearing characteristics and damage mechanism of grouting reinforced body for broken surrounding rock[J]. Journal of China Coal Society,2023,48(S2):411−423.
    [15]
    朱昌星,孙家鑫,王彦伟. 基于CT扫描单轴压缩下注浆体试块裂隙动态演化过程试验研究[J]. 岩土力学,2022,43(9):2493−2503.

    ZHU Changxing,SUN Jiaxin,WANG Yanwei. Experimental study of fracture dynamic evolution process of grouting specimen under uniaxial compression based on CT scanning[J]. Rock and Soil Mechanics,2022,43(9):2493−2503.
    [16]
    杨鸿锐,刘平,孙博,等. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报,2021,40(3):545−555.

    YANG Hongrui,LIU Ping,SUN Bo. Study on damage mechanisms of the microstructure of sandy conglomerate at Maijishan grottoes under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(3):545−555.
    [17]
    刘慧,杨更社,申艳军,等. 冻融–受荷协同作用下砂岩细观损伤演化CT可视化定量表征[J]. 岩石力学与工程学报,2023,42(5):1136−1149.

    LIU Hui,YANG Gengshe,SHEN Yanjun,et al. CT visual quantitative characterization of meso-damage evolution of sandstone under freeze-thaw-loading synergistic effect[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(5):1136−1149.
    [18]
    朱琳,党发宁,丁卫华,等. 基于CT技术和灰度共生矩阵理论研究不同荷载作用下混凝土的细观损伤演化过程[J]. 土木工程学报,2020,53(8):97−107.

    ZHU Lin,DANG Faning,DING Weihua,et al. Coupled X-ray computed tomography and grey level co-occurrence matrices theory as a method for detecting microscopic damage of concrete under different loads[J]. China Civil Engineering Journal,2020,53(8):97−107.
    [19]
    杨仁树,薛华俊,郭东明,等. 基于注浆试验的深井软岩CT分析[J]. 煤炭学报,2016,41(2):345−351.

    YANG Renshu,XUE Huajun,GUO Dongming,et al. Laboratory grouting experiment based CT analysis of grouted soft rocks in deep mines[J]. Journal of China Coal Society,2016,41(2):345−351.
    [20]
    张村,贾胜,王永乐,等. 煤样CT扫描重构研究进展:原理、方法及应用[J/OL]. 煤炭学报,1−20. https://doi.org/10.13225/j.cnki.jccs.2023.1632.

    ZHANG Cun,JIA Sheng,WANG Yongle,et al. CT scanning and reconstruction of coal samples:principle,method and application [J/OL]. Journal of China Coal Society,1−20. https://doi.org/10.13225/j.cnki.jccs.2023.1632.
    [21]
    李兆霖,王连国,姜崇扬,等. 基于实时CT扫描的岩石真三轴条件下三维破裂演化规律[J]. 煤炭学报,2021,46(3):937−949.

    LI Zhaolin,WANG Lianguo,JIANG Chongyang,et al. Three-dimensional fracture evolution patterns of rocks under true triaxial conditions based on real-time CT scanning[J]. Journal of China Coal Society,2021,46(3):937−949.
    [22]
    杨科,刘文杰,李志华,等. 厚硬顶板下大倾角软煤开采灾变机制与防控技术[J]. 煤炭科学技术,2021,49(2):12−20.

    YANG Ke,LIU Wenjie,LI Zhihua,et al. Catastrophe mechanism and prevention and control technology on soft coal mining with large inclination angle under thick and hard roof[J]. Coal Science and Technology,2021,49(2):12−20.
    [23]
    尹大伟,丁屹松,汪锋,等. 考虑初始损伤的压力水浸煤岩力学特性试验研究[J]. 煤炭学报,2023,48(12):4417−4432.

    YIN Dawei,DING Yisong,WANG Feng,et al. Experimental study on mechanical properties of coal soaked in pressurized water considering initial damage[J]. Journal of China Coal Society,2023,48(12):4417−4432.
    [24]
    冯文生,郑治. 大粒径填料工程特性的试验和研究[J]. 公路交通技术,2004(1):1−4,9. doi: 10.3969/j.issn.1009-6477.2004.01.001

    FENG Wensheng,ZHENG Zhi. Tests and researches on engineering properties of large particlesize fillers[J]. Technology of Highway and Transport,2004(1):1−4,9. doi: 10.3969/j.issn.1009-6477.2004.01.001
    [25]
    张超,展旭财,杨春和. 粗粒料强度及变形特性的细观模拟[J]. 岩土力学,2013,34(7):2077−2083.

    ZHANG Chao,ZHAN Xucai,YANG Chunhe. Mesoscopic simulation of strength and deformation characteristics of coarse grained materials[J]. Rock and Soil Mechanics,2013,34(7):2077−2083.
    [26]
    胡炳南,郭爱国. 矸石充填材料压缩仿真实验研究[J]. 煤炭学报,2009,34(8):1076−1080. doi: 10.3321/j.issn:0253-9993.2009.08.014

    HU Bingnan,GUO Aiguo. Testing study on coal waste back filling material compression simulation[J]. Journal of China Coal Society,2009,34(8):1076−1080. doi: 10.3321/j.issn:0253-9993.2009.08.014
    [27]
    张俊文,王海龙,陈绍杰,等. 大粒径破碎岩石承压变形特性[J]. 煤炭学报,2018,43(4):1000−1007.

    ZHANG Junwen,WANG Hailong,CHEN Shaojie,et al. Bearing deformation characteristics of large-size broken rock[J]. Journal of China Coal Society,2018,43(4):1000−1007.
    [28]
    赵兵朝,王京滨,张晴,等. 充填体−散体胶结组合体力学特性试验研究[J]. 煤炭科学技术,2023,51(7):298−309.

    ZHAO Bingchao,WANG Jingbin,ZHANG Qing,et al. Experimental study on mechanical properties of filling-bulk ce-menting combination body[J]. Coal Science and Technology,2023,51(7):298−309.
    [29]
    李海涛,宋力,周宏伟,等. 率效应影响下煤的冲击特性评价方法及应用[J]. 煤炭学报,2015,40(12):2763−2771.

    LI Haitao,SONG Li,ZHOU Hongwei,et al. Evaluation method and application of coal burst performance under the effect of loading rate[J]. Journal of China Coal Society,2015,40(12):2763−2771.
    [30]
    池小楼,杨科,付强,等. 大倾角煤层分层综采再生顶板应力分布规律研究[J]. 采矿与安全工程学报,2022,39(5):891−900.

    CHI Xiaolou,YANG Ke,FU Qiang,et al. Study on stress distribution law of regenerated roof in fully-mechanized layered mining of steeply dipping coal seam[J]. Journal of Mining & Safety Engineering,2022,39(5):891−900.
    [31]
    李文涛,孙章皓,庄妍,等. 氧化镁复合水泥固化硫酸盐渍土的力学、膨胀性能及微观机理[J]. 岩土工程学报,2024,46(9):1840−1848.

    LI Wentao,SUN Zhanghao,ZHUANG Yan,et al. Mechanical and swelling properties,as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering,2024,46(9):1840−1848.
    [32]
    ZHANG Jiqiang,YANG Ke,HE Xiang ,et al. Study on mechanical properties and damage characteristics of coal-based solid waste cemented backfill[J]. Construction and Building Materials,2023,368:130373.
    [33]
    陶明,汪军,李占文,等. 冲击荷载下花岗岩层裂断口细-微观试验研究[J]. 岩石力学与工程学报,2019,38(11):2172−2181.

    TAO Ming,WANG Jun,LI Zhanwen,et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(11):2172−2181.
    [34]
    王雁冰,王兆阳,付代睿,等. 爆后岩石裂隙结构可视化及定量表征方法[J]. 煤炭学报,2024,49(3):1388−1402.

    WANG Yanbing,WANG Zhaoyang,FU Dairui,et al. Visualization and quantitative characterization methods of post-blast rock fracture structure[J]. Journal of China Coal Society,2024,49(3):1388−1402.
    [35]
    杨科,方珏静,张吉雄,等. 加浆改性固体充填材料承载压缩特性与固结机制[J]. 中国矿业大学学报,2024,53(3):456−468.

    YANG Ke,FANG Juejing,ZHANG Jixiong,et al. Compression load-bearing characteristics and consolidation mechanism of grout-modified solid backfill materials[J]. Journal of China University of Mining & Technology,2024,53(3):456−468.
    [36]
    李果,张茹,徐晓炼,等. 三轴压缩煤岩三维裂隙CT图像重构及体分形维研究[J]. 岩土力学,2015,36(6):1633−1642.

    LI Guo,ZHANG Ru,XU Xiaolian,et al. CT image reconstruction of coal rock three-dimensional fractures and body fractal dimension under triaxial compression test[J]. Rock and Soil Mechanics,2015,36(6):1633−1642.
    [37]
    罗生虎,王同,伍永平,等. 大倾角煤层长壁开采围岩应力传递路径时空演化特征[J]. 煤炭学报,2022,47(7):2534−2545.

    LUO Shenghu,WANG Tong,WU Yongping,et al. Space-time evolution characteristics of stress transfer path of surrounding rock in longwall mining of steeply dipping seam[J]. Journal of China Coal Society,2022,47(7):2534−2545.

Catalog

    Article views (97) PDF downloads (59) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return