Advance Search
JIANG Lishuai,YANG Yiming,ZHAO Yang,et al. Mechanical response and energy dissipation law of rock-like mass with internal fractures under dynamic load[J]. Coal Science and Technology,2025,53(2):137−150. DOI: 10.12438/cst.2024-1409
Citation: JIANG Lishuai,YANG Yiming,ZHAO Yang,et al. Mechanical response and energy dissipation law of rock-like mass with internal fractures under dynamic load[J]. Coal Science and Technology,2025,53(2):137−150. DOI: 10.12438/cst.2024-1409

Mechanical response and energy dissipation law of rock-like mass with internal fractures under dynamic load

More Information
  • Received Date: October 06, 2024
  • Available Online: February 20, 2025
  • The strength of coal, mudstone, sandstone and other common rocks in the surrounding rock of deep roadway is low and the fractures are developed. Dynamic disasters are prone to occur in the complex mechanical environment of deep roadway. The key to clarify the occurrence of dynamic disasters is to study the dynamic response and energy dissipation law of the internal fracture characteristics to the rock mass. In order to study the influence of internal fracture dip angle and fracture distribution on the dynamic mechanical response and energy dissipation law of rock-like mass, the rock-like mass samples with internal fractures were prepared by sand powder 3D printing. The dynamic compression test of the samples was carried out by split Hopkinson pressure bar (SHPB). The high-speed camera was used to observe the crack development, and the dynamic failure characteristics were analyzed by combining the energy dissipation principle and fractal theory. The results show that with the increase of the dip angle of the internal fracture, the dynamic peak stress and the dynamic elastic modulus of the samples decrease first and then increase, both of which are the lowest at 30º. With the increase of the number of fractures, the influence of vertical distribution fractures on the dynamic peak stress of the sample is greater than that of horizontal distribution fractures. The energy dissipation of sample failure decreases first and then increases with the increase of fracture dip angle. When the fracture dip angle is small, the existence of loose filling will aggravate the attenuation of stress wave and increase the energy dissipation. With the increase of fracture dip angle, the influence of filling on the energy dissipation of sample decreases gradually. Under the same crack inclination angle, with the increase of fracture number, the energy dissipation of vertical distribution fracture samples are less than that of horizontal distribution fracture, which is positively correlated with the dynamic peak stress of sample. With the increase of fracture dip angle, the fractal dimension of the sample increases first and then decreases. When the fracture dip angle is 30°, the fracture degree of the sample is the largest, and the fractal dimension of the sample is the largest. The increase of the number of cracks makes the fragmentation of the sample gradually uniform, and the fractal dimension of the sample shows an increasing trend. The research results reveal the influence of internal fractures on the dynamic characteristics and energy dissipation of rock mass, and provide an important basis for the dynamic test of complex internal fractured rock mass by using sand powder 3D printing technology. It is of great significance to further understand the fracture and instability mechanism of surrounding rock in deep soft rock roadway in practical engineering.

  • [1]
    康红普,范明建,高富强,等. 超千米深井巷道围岩变形特征与支护技术[J]. 岩石力学与工程学报,2015,34(11):2227−2241.

    KANG Hongpu,FAN Mingjian,GAO Fuqiang,et al. Deformation and support of rock roadway at depth more than 1 000 meters[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2227−2241.
    [2]
    谢和平,张茹,张泽天,等. 深地科学与深地工程技术探索与思考[J]. 煤炭学报,2023,48(11):3959−3978.

    XIE Heping,ZHANG Ru,ZHANG Zetian,et al. Reflections and explorations on deep earth science and deep earth engineering technology[J]. Journal of China Coal Society,2023,48(11):3959−3978.
    [3]
    潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报,2018,43(8):2091−2098.

    PAN Yishan. Disturbance response instability theory of rockburst in coal mine[J]. Journal of China Coal Society,2018,43(8):2091−2098.
    [4]
    何满潮,武毅艺,高玉兵,等. 深部采矿岩石力学进展[J]. 煤炭学报,2024,49(1):75−99.

    HE Manchao,WU Yiyi,GAO Yubing,et al. Research progress of rock mechanics in deep mining[J]. Journal of China Coal Society,2024,49(1):75−99.
    [5]
    李伟,孙希奎. 深地煤炭资源安全高效智能化开采关键技术与实践[J]. 煤炭科学技术,2024,52(1):52−64. doi: 10.12438/cst.2023-1794

    LI Wei,SUN Xikui. Key technologies and practices for safe,efficient,and intelligent mining of deep coal resources[J]. Coal Science and Technology,2024,52(1):52−64. doi: 10.12438/cst.2023-1794
    [6]
    左建平,刘海雁,王军,等. 深部巷道主被动全空间协同控制技术及工程应用[J]. 煤炭科学技术,2023,51(7):255−267.

    ZUO Jianping,LIU Haiyan,WANG Jun,et al. Active and passive full-space collaborative control technology and engineering application in deep roadways[J]. Coal Science and Technology,2023,51(7):255−267.
    [7]
    HOPKINSON B. A method of measuring the pressure produced in the detonation of high,explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society of London. Series A,Containing Papers of a Mathematical or Physical Character,213(497-508):437−456.
    [8]
    DAVIES Robert L. A critical study of the hopkinson pressure bar[J]. Philosophical Transactions of the Royal Society of London. Series A,Mathematical and Physical Sciences,240(821):375−457.
    [9]
    KOLSKY H. An Investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B:676−700.
    [10]
    LI X B,ZHOU Z L,LOK T S,et al. Innovative testing technique of rock subjected to coupled static and dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(5):739−748. doi: 10.1016/j.ijrmms.2007.08.013
    [11]
    刘晓辉,张茹,刘建锋. 不同应变率下煤岩冲击动力试验研究[J]. 煤炭学报,2012,37(9):1528−1534.

    LIU Xiaohui,ZHANG Ru,LIU Jianfeng. Dynamic test study of coal rock under different strain rates[J]. Journal of China Coal Society,2012,37(9):1528−1534.
    [12]
    黄达,谭清,黄润秋. 高围压卸荷条件下大理岩破碎块度分形特征及其与能量相关性研究[J]. 岩石力学与工程学报,2012,31(7):1379−1389. doi: 10.3969/j.issn.1000-6915.2012.07.010

    HUANG Da,TAN Qing,HUANG Runqiu. Fractal characteristics of fragmentation and correlation with energy of marble under unloading with high confining pressure[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(7):1379−1389. doi: 10.3969/j.issn.1000-6915.2012.07.010
    [13]
    GONG H L,LUO Y,ZHOU J R,et al. Fracture behaviors and damage evolution anisotropy of granite under coupling of multiaxial confinement and dynamic loading[J]. Rock Mechanics and Rock Engineering,2023,56(4):2515−2534. doi: 10.1007/s00603-022-03208-9
    [14]
    ZHANG J R,LUO Y,HUANG J H,et al. Progressive damage and fracture behavior of brittle rock under multi-axial prestress constraint and cyclic impact load coupling[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2024,10(1):48. doi: 10.1007/s40948-024-00766-w
    [15]
    李夕兵,周子龙,叶州元,等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报,2008,27(7):1387−1395. doi: 10.3321/j.issn:1000-6915.2008.07.011

    LI Xibing,ZHOU Zilong,YE Zhouyuan,et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(7):1387−1395. doi: 10.3321/j.issn:1000-6915.2008.07.011
    [16]
    宫凤强,陆道辉,李夕兵,等. 不同应变率下砂岩动态强度准则的试验研究[J]. 岩土力学,2013,34(9):2433−2441,2429.

    GONG Fengqiang,LU Daohui,LI Xibing,et al. Experimental research of sandstone dynamic strength criterion under different strain rates[J]. Rock and Soil Mechanics,2013,34(9):2433−2441,2429.
    [17]
    LI D Y,HAN Z Y,SUN X L,et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests[J]. Rock Mechanics and Rock Engineering,2019,52(6):1623−1643. doi: 10.1007/s00603-018-1652-5
    [18]
    LIU T T,DING L Y,WANG G,et al. Dynamic properties and failure mechanism of granite with non-persistent joints subjected to impact load[J]. International Journal of Rock Mechanics and Mining Sciences,2023,169:105451. doi: 10.1016/j.ijrmms.2023.105451
    [19]
    鞠杨,谢和平,郑泽民,等. 基于3D打印技术的岩体复杂结构与应力场的可视化方法[J]. 科学通报,2014,59(32):3109−3119. doi: 10.1360/csb2014-59-32-3109

    JU Yang,XIE Heping,ZHENG Zemin,et al. Visualization of the complex structure and stress field inside rock by means of 3D printing technology[J]. Chinese Science Bulletin,2014,59(32):3109−3119. doi: 10.1360/csb2014-59-32-3109
    [20]
    王相龙,潘结南,王凯,等. 微米CT扫描尺度下构造煤微裂隙结构特征及其对渗透性的控制[J]. 煤炭学报,2023,48(3):1325−1334.

    WANG Xianglong,PAN Jienan,WANG Kai,et al. Characteristics of micro-CT scale pore-fracture of tectonic ally deformed coal and their controlling effect on permeability[J]. Journal of China Coal Society,2023,48(3):1325−1334.
    [21]
    JIANG L S,KONG P,ZHANG P P,et al. Dynamic analysis of the rock burst potential of a longwall panel intersecting with a fault[J]. Rock Mechanics and Rock Engineering,2020,53(4):1737−1754. doi: 10.1007/s00603-019-02004-2
    [22]
    WANG P T,MA C,ZHANG B,et al. Development of an improved three-dimensional rough discrete fracture network model:Method and application[J]. International Journal of Mining Science and Technology,2023,33(12):1469−1485. doi: 10.1016/j.ijmst.2023.10.004
    [23]
    王兆会,孙文超,王雪冰,等. 预制裂隙类岩石试件表面变形场演化与裂隙扩展机理研究[J]. 煤炭科学技术,2023,51(10):72−82.

    WANG Zhaohui,SUN Wenchao,WANG Xuebing,et al. Surface deformation field and fracture propagation mechanism of rock-like specimen with pre-existing fracture[J]. Coal Science and Technology,2023,51(10):72−82.
    [24]
    李术才,杨磊,李明田,等. 三维内置裂隙倾角对类岩石材料拉伸力学性能和断裂特征的影响[J]. 岩石力学与工程学报,2009,28(2):281−289. doi: 10.3321/j.issn:1000-6915.2009.02.009

    LI Shucai,YANG Lei,LI Mingtian,et al. Influences of 3d internal crack dip angle on tensile mechanical properties and fracture features of rock-like material[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):281−289. doi: 10.3321/j.issn:1000-6915.2009.02.009
    [25]
    戴峰,魏明东,徐奴文,等. 内置三维裂隙非均匀性岩石渐进破坏数值研究[J]. 应用基础与工程科学学报,2014,22(6):1178−1186.

    DAI Feng,WEI Mingdong,XU Nuwen,et al. Numerical simulation on progressive failure of heterogeneous rock specimens with A pre-existing three-dimensional crack[J]. Journal of Basic Science and Engineering,2014,22(6):1178−1186.
    [26]
    王文海,蒋力帅,何鑫,等. 基于砂型3D打印的复杂节理岩体变形破坏特征试验研究[J]. 岩石力学与工程学报,2024,43(3):754−767.

    WANG Wenhai,JIANG Lishuai,HE Xin,et al. Experimental study on deformation and failure characteristic of complex jointed rock mass based on sand-powder 3D printing[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(3):754−767.
    [27]
    LEI R D,ZHANG Z Y,BERTO F,et al. Strain localization and cracking behavior of sandstone with two gypsum-infilled parallel flaws[J]. Theoretical and Applied Fracture Mechanics,2021,112:102873. doi: 10.1016/j.tafmec.2020.102873
    [28]
    MOKHTARIAN H,MOOMIVAND H,MOOMIVAND H. Effect of infill material of discontinuities on the failure criterion of rock under triaxial compressive stresses[J]. Theoretical and Applied Fracture Mechanics,2020,108:102652. doi: 10.1016/j.tafmec.2020.102652
    [29]
    DYSKIN A V,SAHOURYEH E,JEWELL R J,et al. Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression[J]. Engineering Fracture Mechanics,2003,70(15):2115−2136. doi: 10.1016/S0013-7944(02)00240-0
    [30]
    WANG H Y,DYSKIN A,PASTERNAK E,et al. Effect of the intermediate principal stress on 3-D crack growth[J]. Engineering Fracture Mechanics,2018,204:404−420. doi: 10.1016/j.engfracmech.2018.10.024
    [31]
    FU J W,CHEN K,ZHU W S,et al. Progressive failure of new modelling material with a single internal crack under biaxial compression and the 3-D numerical simulation[J]. Engineering Fracture Mechanics,2016,165:140−152. doi: 10.1016/j.engfracmech.2016.08.002
    [32]
    WANG X Z,JIANG L S,LI Y Y,et al. Experimental study on the mechanical behavior and failure characteristics of rock analogs with filled internal fractures:A new method by sand powder 3D printing[J]. Construction and Building Materials,2024,427:136261. doi: 10.1016/j.conbuildmat.2024.136261
    [33]
    ZHOU T,ZHU J B. Identification of a suitable 3D printing material for mimicking brittle and hard rocks and its brittleness enhancements[J]. Rock Mechanics and Rock Engineering,2018,51(3):765−777. doi: 10.1007/s00603-017-1335-7
    [34]
    ZHU J B,ZHOU T,LIAO Z Y,et al. Replication of internal defects and investigation of mechanical and fracture behaviour of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography[J]. International Journal of Rock Mechanics and Mining Sciences,2018,106:198−212. doi: 10.1016/j.ijrmms.2018.04.022
    [35]
    ZHAO Y,JIANG L S,LI C N,et al. Experimental investigation into the mechanical behavior of jointed soft rock using sand powder 3D printing[J]. Rock Mechanics and Rock Engineering,2023,56(7):5383−5404. doi: 10.1007/s00603-023-03346-8
    [36]
    蒋力帅,王鑫哲,徐清,等. 砂型3D打印材料对类软岩力学特性影响规律及机理[J]. 煤炭科学技术,2023,51(11):84−94. doi: 10.12438/cst.2022-2060

    JIANG Lishuai,WANG Xinzhe,XU Qing,et al. Influence and mechanism of printing materials on the mechanical properties of sand powder 3D printed weak rock-like materials[J]. Coal Science and Technology,2023,51(11):84−94. doi: 10.12438/cst.2022-2060
    [37]
    XU Q,JIANG L S,MA C Q,et al. Effect of layer thickness on the physical and mechanical properties of sand powder 3D printing specimens[J]. Frontiers in Earth Science,2021,9:763202. doi: 10.3389/feart.2021.763202
    [38]
    PERRAS M A,VOGLER D. Compressive and tensile behavior of 3D-printed and natural sandstones[J]. Transport in Porous Media,2019,129(2):559−581. doi: 10.1007/s11242-018-1153-8
    [39]
    蒋力帅,吴星宇,王庆伟,等. 砂型3D打印类煤试样动静组合加载力学特性[J]. 煤炭学报,2022,47(3):1196−1207.

    JIANG Lishuai,WU Xingyu,WANG Qingwei,et al. Dynamic mechanical behaviors of sand-powder 3D printing rock-like specimens under coupled static and dynamic loads[J]. Journal of China Coal Society,2022,47(3):1196−1207.
    [40]
    WANG L,SU H M,QIN Y,et al. Study on dynamic constitutive model of weakly consolidated soft rock in western China[J]. Shock and Vibration,2020,2020:8865013.
    [41]
    王磊,袁秋鹏,谢广祥,等. 冲击载荷下煤样能量耗散与破碎分形的长径比效应[J]. 煤炭学报,2022,47(4):1534−1546.

    WANG Lei,YUAN Qiupeng,XIE Guangxiang,et al. Length-diameter ratio effect of energy dissipation and fractals of coal samples under impact loading[J]. Journal of China Coal Society,2022,47(4):1534−1546.
    [42]
    LI C J,XU Y,CHEN P Y,et al. Dynamic mechanical properties and fragment fractal characteristics of fractured coal–rock-like combined bodies in split Hopkinson pressure bar tests[J]. Natural Resources Research,2020,29(5):3179−3195. doi: 10.1007/s11053-020-09656-w
    [43]
    ZHANG Z,JIANG L S,LI C N,et al. Characteristics and mechanism of time on sand powder 3D printing rock analogue:A new method for fractured rock mechanics[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2023,9(1):166. doi: 10.1007/s40948-023-00707-z
    [44]
    李夕兵. 岩石动力学基础与应用[M]. 北京:科学出版社,2014.
    [45]
    WU X Y,JIANG L S,TAO M,et al. Dynamic behaviors and bolt-strengthening effect of sand-powder 3D printing rock analog under static and dynamic coupled loading[J]. Construction and Building Materials,2024,411:134723. doi: 10.1016/j.conbuildmat.2023.134723
    [46]
    李地元,韩震宇,孙小磊,等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究[J]. 岩石力学与工程学报,2017,36(12):2872−2883.

    LI Diyuan,HAN Zhenyu,SUN Xiaolei,et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2872−2883.
    [47]
    刘晓辉,薛洋,郑钰,等. 冲击荷载下煤岩破碎过程能量释放研究[J]. 岩石力学与工程学报,2021,40(S2):3201−3211.

    LIU Xiaohui,XUE Yang,ZHENG Yu,et al. Study on energy release during coal and rock crushing under impact load[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S2):3201−3211.
    [48]
    田威,余宸,王肖辉,等. 3D打印裂隙岩体动态力学性能及能量耗散规律初探[J]. 岩石力学与工程学报,2022,41(3):446−456.

    TIAN Wei,YU Chen,WANG Xiaohui,et al. A preliminary research on dynamic mechanical properties and energy dissipation rule of 3D printed fractured rock[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(3):446−456.
    [49]
    YAN Z L,DAI F,ZHU J B,et al. Dynamic cracking behaviors and energy evolution of multi-flawed rocks under static pre-compression[J]. Rock Mechanics and Rock Engineering,2021,54(9):5117−5139. doi: 10.1007/s00603-021-02564-2
    [50]
    张平,李宁,贺若兰,等. 动载下两条断续预制裂隙贯通机制研究[J]. 岩石力学与工程学报,2006,25(6):1210−1217.

    ZHANG Ping,LI Ning,HERUO Lan,et al. Mechanism of fracture coalescence between two pre-existing flaws under dynamic loading[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(6):1210−1217.
    [51]
    黄理兴. 动荷载作用下岩石裂纹的扩展与控制[J]. 水利学报,1988,19(1):53−58. doi: 10.3321/j.issn:0559-9350.1988.01.007

    HUANG Lixing. Propagation and control of rock crack under dynamic load[J]. Journal of Hydraulic Engineering,1988,19(1):53−58. doi: 10.3321/j.issn:0559-9350.1988.01.007
    [52]
    谢和平,鞠杨,黎立云,等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报,2008,27(9):1729−1740. doi: 10.3321/j.issn:1000-6915.2008.09.001

    XIE Heping,JU Yang,LI Liyun,et al. Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1729−1740. doi: 10.3321/j.issn:1000-6915.2008.09.001
    [53]
    黎立云,徐志强,谢和平,等. 不同冲击速度下岩石破坏能量规律的实验研究[J]. 煤炭学报,2011,36(12):2007−2011.

    LI Liyun,XU Zhiqiang,XIE Heping,et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities[J]. Journal of China Coal Society,2011,36(12):2007−2011.
    [54]
    夏昌敬,谢和平,鞠杨,等. 冲击载荷下孔隙岩石能量耗散的实验研究[J]. 工程力学,2006,23(9):1−5.

    XIA Changjing,XIE Heping,JU Yang,et al. Experimental study of energy dissipation of porous rock under impact loading[J]. Engineering Mechanics,2006,23(9):1−5.
    [55]
    单晓云,李占金. 分形理论和岩石破碎的分形研究[J]. 河北理工学院学报,2003,25(2):11−17,30.

    SHAN Xiaoyun,LI Zhanjin. Fractal theory,characteristics and its application on rock fragmentation[J]. Journal of Hebei Institute of Technology,2003,25(2):11−17,30.
    [56]
    谢和平,高峰,周宏伟,等. 岩石断裂和破碎的分形研究[J]. 防灾减灾工程学报,2003,23(4):1−9. doi: 10.3969/j.issn.1672-2132.2003.04.001

    XIE Heping,GAO Feng,ZHOU Hongwei,et al. Fractal fracture and fragmentation in rocks[J]. Journal of Seismology,2003,23(4):1−9. doi: 10.3969/j.issn.1672-2132.2003.04.001
    [57]
    马军,谭春,马智法,等. 裂隙岩体复杂结构面特征预测与密度计算[J]. 岩石力学与工程学报,2021,40(S2):3127−3136.

    MA Jun,TAN Chun,MA Zhifa,et al. Prediction and density calculation of complex structural plane features of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S2):3127−3136.

Catalog

    Article views (202) PDF downloads (89) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return