Citation: | LYU Chao,LYU Wenyu,SUN Qiang,et al. Theoretical and technical concept of cemented backfill material for flexible enhanced thermal energy storage in coal underground space[J]. Coal Science and Technology,2025,53(4):104−113. DOI: 10.12438/cst.2024-1400 |
Thermal energy storage in underground coal mining is a crucial approach to achieving the transformation and upgrading of mines. The cemented backfill material for enhanced thermal energy storage not only improves the utilization rate of coal-based solid waste resources, but also ensures the efficient consumption and utilization of renewable energy. The research status of backfill mining is analyzed based on the current coal mining technology and the scientific concept of "cemented backfill material for flexible enhanced thermal energy storage (CBM–FETES)" is proposed by integrating the idea of functional filling. The core of CBM–FETES is to ensure the four essential conditions: the suitability of geological conditions, the feasibility of thermal storage and extraction technologies, high efficiency in heat and mass transfer, and the safety and stability of the operational cycle. The key to achieving the efficient operation of CBM–FETES is to improve the thermal energy storage and extraction efficiency, enhance the sealing of the thermal storage system, and ensure the stability of the surrounding rock. The impact of factors such as heat source temperature, heat transfer distance and the circulation velocity on the heat extraction efficiency is analyzed, and thus the efficient heat extraction technique for CBM–FETES can be developed. Moreover, the efficient heat exchange design method for thermal energy is established based on the above analysis. During the process of thermal energy storage and extraction, micro-mechanisms of aging deformation and damage in backfilling body is revealed and the stability prediction and evaluation system is constructed based on the analysis of the thermodynamic characteristics of backfilling body. The technical path of CBM–FETES revolves around the following strategic mainline: pre-mining geological conditions → dynamic parameters response of backfilling body during mining → coupling effect of buried pipes, backfilling body and surrounding rock → coordinated development of mining underground space and variable energy. The planning and design of operational parameters for the thermal energy storage system is conducted by integrating the wind-solar hybrid concept, exploration and site selection for thermal storage layers, advanced planning of thermal storage filling systems and preparation of high-efficiency thermal storage materials. Based on mining theory, geological support theory and engineering technology system of CBM–FETES, which integrates coal mining, geological engineering, and ecological environment technologies, is established. In general, CBM–FETES realizes the full integration of mines and variable energy sources and enriches the connotation of filling mining. In addition, CBM–FETES proposed in this paper can provide theoretical references and practical examples for the development of renewable energy in coal mining areas and promote the transformation and utilization of mines in China.
[1] |
谢和平,张吉雄,高峰,等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报,2024,49(1):36−46.
XIE Heping,ZHANG Jixiong,GAO Feng,et al. Theory and technical conception of carbon-negative and high-efficient backfill mining in coal mines[J]. Journal of China Coal Society,2024,49(1):36−46.
|
[2] |
张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.
ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
|
[3] |
李猛,张吉雄,邓雪杰,等. 含水层下固体充填保水开采方法与应用[J]. 煤炭学报,2017,42(1):127−133.
LI Meng,ZHANG Jixiong,DENG Xuejie,et al. Method of water protection based on solid backfill mining under water bearing strata and its application[J]. Journal of China Coal Society,2017,42(1):127−133.
|
[4] |
冯国瑞,杜献杰,郭育霞,等. 结构充填开采基础理论与地下空间利用构想[J]. 煤炭学报,2019,44(1):74−84.
FENG Guorui,DU Xianjie,GUO Yuxia,et al. Basic theory of constructional backfill mining and the underground space utilization concept[J]. Journal of China Coal Society,2019,44(1):74−84.
|
[5] |
刘建功,李新旺,何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141−150.
LIU Jiangong,LI Xinwang,HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141−150.
|
[6] |
林海,杨仁树,李永亮,等. 短壁连采连充式胶结充填采煤技术应用研究[J]. 工程科学学报,2022,44(6):981−992. doi: 10.3321/j.issn.1001-053X.2022.6.bjkjdxxb202206002
LIN Hai,YANG Renshu,LI Yongliang,et al. Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology[J]. Chinese Journal of Engineering,2022,44(6):981−992. doi: 10.3321/j.issn.1001-053X.2022.6.bjkjdxxb202206002
|
[7] |
郭平业,卜墨华,张鹏,等. 矿山地热防控与利用研究进展[J]. 工程科学学报,2022,44(10):1632−1651. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210003
GUO Pingye,BU Mohua,ZHANG Peng,et al. Research progress on the prevention and utilization of mine geothermal energy[J]. Chinese Journal of Engineering,2022,44(10):1632−1651. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210003
|
[8] |
刘浪,辛杰,张波,等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报,2018,43(7):1811−1820.
LIU Lang,XIN Jie,ZHANG Bo,et al. Basic theories and applied exploration of functional backfill in mines[J]. Journal of China Coal Society,2018,43(7):1811−1820.
|
[9] |
LIU H F,RODRIGUEZ-DONO A,ZHANG J X,et al. A new method for exploiting mine geothermal energy by using functional cemented paste backfill material for phase change heat storage:Design and experimental study[J]. Journal of Energy Storage,2022,54:105292. doi: 10.1016/j.est.2022.105292
|
[10] |
LI B Y,ZHANG J X,ALI GHOREISHI-MADISEH S,et al. Energy performance of seasonal thermal energy storage in underground backfilled stopes of coal mines[J]. Journal of Cleaner Production,2020,275:122647.
|
[11] |
袁亮,姜耀东,王凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20.
YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.
|
[12] |
刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15.
LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
|
[13] |
张吉雄,刘恒凤,周楠,等. 深部矿山相变蓄热功能充填采热构想及技术体系[J]. 采矿与安全工程学报,2023,40(5):933−944.
ZHANG Jixiong,LIU Hengfeng,ZHOU Nan,et al. Design and technical system of phase change heat storage and mine geothermal exploiting method of functional backfilling in deep mine[J]. Journal of Mining & Safety Engineering,2023,40(5):933−944.
|
[14] |
张吉雄,汪集暘,周楠,等. 深部矿山地热与煤炭资源协同开发技术体系研究[J]. 工程科学学报,2022,44(10):1682−1693. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210007
ZHANG Jixiong,WANG Jiyang,ZHOU Nan,et al. Collaborative mining system of geothermal energy and coal resources in deep mines[J]. Chinese Journal of Engineering,2022,44(10):1682−1693. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210007
|
[15] |
薛放心. 矿井回风传热传质及热能效实验研究[D]. 徐州:中国矿业大学,2014.
XUE Fangxin. Study on mine return air heat-mass transfer and thermal efficiency of the experiment[D]. Xuzhou:China University of Mining and Technology,2014.
|
[16] |
张小艳,文德,赵玉娇,等. 矿山蓄热/储能充填体的热−力性能与传热过程[J]. 煤炭学报,2021,46(10):3158−3171.
ZHANG Xiaoyan,WEN De,ZHAO Yujiao,et al. Thermal-mechanical properties and heat transfer process of heat storage/energy storage backfill body in mine[J]. Journal of China Coal Society,2021,46(10):3158−3171.
|
[17] |
高雪峰,张延军,黄奕斌,等. 花岗岩粗糙单裂隙对流换热特性的数值模拟[J]. 岩土力学,2020,41(5):1761−1769.
GAO Xuefeng,ZHANG Yanjun,HUANG Yibin,et al. Numerical simulation of convective heat transfer characteristics of a rough single fracture in granite[J]. Rock and Soil Mechanics,2020,41(5):1761−1769.
|
[18] |
徐文彬,万昌兵,田喜春. 温度裂隙对充填体强度耦合效应及裂纹扩展模式[J]. 采矿与安全工程学报,2018,35(3):612−619.
XU Wenbin,WAN Changbing,TIAN Xichun. Coupling effect of temperature and fracture on the strength and crack propagation mode of backfill mass[J]. Journal of Mining & Safety Engineering,2018,35(3):612−619.
|
[19] |
程爱平,周亚峰,陈国菊,等. 单轴压缩下胶结尾矿充填体的声发射特性和断裂机理:实验和数值研究[J]. 国际环境科学与污染研究,2023,30(19):55143−55157. doi: 10.1007/s11356-023-26298-6
CHENG Aiping,ZHOU Yafeng,CHEN Guoju,et al. Acoustic emission characteristics and fracture mechanism of cemented tailings backfill under uniaxial compression:Experimental and numerical study[J]. Environmental Science and Pollution Research,2023,30(19):55143−55157. doi: 10.1007/s11356-023-26298-6
|
[20] |
LIU Z B,WANG H Y,LI Y P,et al. Triaxial compressive strength,failure,and rockburst potential of granite under high-stress and ground-temperature coupled conditions[J]. Rock Mechanics and Rock Engineering,2023,56(2):911−932. doi: 10.1007/s00603-022-03066-5
|
[21] |
YIN W T,ZHAO Y S,FENG Z J. Effect of hydrothermal fluid backfill on the mechanical behavior of deep granite under high-temperature and high-pressure conditions[J]. Rock Mechanics and Rock Engineering,2023,56(7):4923−4937. doi: 10.1007/s00603-023-03310-6
|
[22] |
YU X,SONG W D,TAN Y Y,et al. Energy dissipation and 3D fracturing of backfill-encased-rock under triaxial compression[J]. Construction and Building Materials,2022,341:127877.
|
[23] |
胡谱达,刘艳章,李凯兵,等. 温度与灰砂比对尾砂胶结充填体力学及损伤特性的影响[J]. 有色金属科学与工程,2024,15(6):890−900.
HU Puda,LIU Yanzhang,LI Kaibing,et al. The Influence of temperature and cement-tailings ratio on the mechanical and damage characteristics of cemented tailings backfill[J]. Nonferrous Metals Science and Engineering,2024,15(6):890−900.
|
[24] |
王勇,吴爱祥,王洪江,等. 初始温度条件下全尾胶结膏体损伤本构模型[J]. 工程科学学报,2017,39(1):31−38.
WANG Yong,WU Aixiang,WANG Hongjiang,et al. Damage constitutive model of cemented tailing paste under initial temperature effect[J]. Chinese Journal of Engineering,2017,39(1):31−38.
|
[25] |
GAO T,SUN W,LIU Z,et al. Investigation on fracture characteristics and failure pattern of inclined layered cemented tailings backfill[J]. Construction and Building Materials,2022,343:128110. doi: 10.1016/j.conbuildmat.2022.128110
|
[26] |
YIN S H,HOU Y Q,CHEN X,et al. Mechanical behavior,failure pattern and damage evolution of fiber-reinforced cemented sulfur tailings backfill under uniaxial loading[J]. Construction and Building Materials,2022,332:127248. doi: 10.1016/j.conbuildmat.2022.127248
|
[27] |
SUN Q,CAI C,ZHANG S K,et al. Study of localized deformation in geopolymer cemented coal gangue-fly ash backfill based on the digital speckle correlation method[J]. Construction and Building Materials,2019,215:321−331. doi: 10.1016/j.conbuildmat.2019.04.208
|
[28] |
QIU Jingping,XIANG Junchen,ZHANG Wenqing,et al. Effect of microbial-cemented on mechanical properties of iron tailings backfill and its mechanism analysis[J]. Construction and Building Materials,2022,318:126001.
|
[29] |
曹帅,宋卫东,薛改利,等. 分层尾砂胶结充填体力学特性变化规律及破坏模式[J]. 中国矿业大学学报,2016,45(4):717−722,728.
CAO Shuai,SONG Weidong,XUE Gaili,et al. Mechanical characteristics variation of stratified cemented tailing backfilling and its failure modes[J]. Journal of China University of Mining & Technology,2016,45(4):717−722,728.
|
[30] |
何晏,张钦礼,陈秋松,等. 含锂渣掺合料胶结膏体回填的力学和环境特性[J]. 建筑与建筑材料,2021,271:121567.
HE Yan,ZHANG Qinli,CHEN Qiusong,et al. Mechanical and environmental characteristics of cemented paste backfill containing lithium slag-blended binder[J]. Construction and Building Materials,2021,271:121567.
|
[31] |
孙强,张卫强,耿济世,等. 利用煤炭开发地下空间储能的技术路径与地质保障[J]. 煤田地质与勘探,2023,51(2):229−242. doi: 10.12363/issn.1001-1986.22.10.0799
SUN Qiang,ZHANG Weiqiang,GENG Jishi,et al. Technological path and geological guarantee for energy storage in underground space formed by coal mining[J]. Coal Geology & Exploration,2023,51(2):229−242. doi: 10.12363/issn.1001-1986.22.10.0799
|
[32] |
王双明,孙强,袁士豪,等. 论煤–水–土多资源协调开发[J]. 西北地质,2024,57(5):1−10. doi: 10.12401/j.nwg.2024069
WANG Shuangming,SUN Qiang,YUAN Shihao,et al. On the coordinated development of coal-water-soil multiple resources[J]. Northwestern Geology,2024,57(5):1−10. doi: 10.12401/j.nwg.2024069
|
[33] |
王双明,耿济世,李鹏飞,等. 煤炭绿色开发地质保障体系的构建[J]. 煤田地质与勘探,2023,51(1):33−43. doi: 10.12363/issn.1001-1986.23.01.0030
WANG Shuangming,GENG Jishi,LI Pengfei,et al. Construction of geological guarantee system for green coal mining[J]. Coal Geology & Exploration,2023,51(1):33−43. doi: 10.12363/issn.1001-1986.23.01.0030
|
[34] |
王双明,孙强,耿济世,等. 煤炭开采地球关键带响应及减损开采技术体系[J]. 中国地质,2024,52(1):1−21. doi: 10.12029/gc20231124001
WANG Shuangming,SUN Qiang,GENG Jishi,et al. Geological support for response and damage reduction in earth's critical zone under coal mining[J]. Geology in China,2024,52(1):1−21. doi: 10.12029/gc20231124001
|
[35] |
TISKATINE R,EDDEMANI A,GOURDO L,et al. Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage[J]. Applied Energy,2016,171:243−255. doi: 10.1016/j.apenergy.2016.03.061
|
[36] |
李百宜,张吉雄,刘恒凤,等. 煤矿采空区储能式充填技术及储能增效机制[J]. 采矿与安全工程学报,2022,39(6):1161−1168,1176.
LI Baiyi,ZHANG Jixiong,LIU Hengfeng,et al. Energy-stored backfilling technology and energy storage efficiency enhancement mechanism in coal mine goaf[J]. Journal of Mining & Safety Engineering,2022,39(6):1161−1168,1176.
|
[37] |
王双明,刘浪,赵玉娇,等. “双碳” 目标下赋煤区新能源开发:未来煤矿转型升级新路径[J]. 煤炭科学技术,2023,51(1):59−79.
WANG Shuangming,LIU Lang,ZHAO Yujiao,et al. New energy exploitation in coal-endowed areas under the target of “double carbon”:A new path for transformation and upgrading of coal mines in the future[J]. Coal Science and Technology,2023,51(1):59−79.
|
[38] |
张晓燕,徐慕燕,刘朗,等. 相变材料胶结浆体回填物的热力学性能试验研究[J]. 材料研究与技术杂志,2020,9(2):2164−2175. doi: 10.1016/j.jmrt.2019.12.047
ZHANG Xiaoyan,XU Muyan,LIU Lang,et al. Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material[J]. Journal of Materials Research and Technology,2020,9(2):2164−2175. doi: 10.1016/j.jmrt.2019.12.047
|
[39] |
李百宜. 煤矿储能式充填空间热能存取机理及方法研究[D]. 徐州:中国矿业大学,2020.
LI Baiyi. Thermal energy storage mechanism and method in underground energy-stored functional backfilled stopes[D]. Xuzhou:China University of Mining and Technology,2020.
|
[40] |
CÉLESTIN J C H,FALL M. Thermal conductivity of cemented paste backfill material and factors affecting it[J]. International Journal of Mining,Reclamation and Environment,2009,23(4):274−290. doi: 10.1080/17480930902731943
|
[41] |
ABBASY F,HASSANI F P,ALI GHOREISHI MADISEH S,et al. An experimental study on the effective parameters of thermal conductivity of mine backfill[J]. Heat Transfer Engineering,2014,35(13):1209−1224. doi: 10.1080/01457632.2013.870373
|
[42] |
GHOREISHI-MADISEH S A,HASSANI F,ABBASY F. Numerical and experimental study of geothermal heat extraction from backfilled mine stopes[J]. Applied Thermal Engineering,2015,90:1119−1130. doi: 10.1016/j.applthermaleng.2014.11.023
|