Citation: | WEI Jianping,XIAO Pengwei,ZHANG Huidong,et al. Study on the optimal parameter matching model of rotary cutting coal-rock for abrasive water jet[J]. Coal Science and Technology,2025,53(1):192−202. DOI: 10.12438/cst.2024-1396 |
As coal mining extends deeper, pure water jet technology is gradually unable to meet the demand for coal penetration enhancement under high stress and high coal rock strength conditions. Abrasive water jet can effectively improve the rock breaking ability of water jet, and the abrasive water jet rotary cutting pressure relief technology can achieve efficient anti permeability of high stress and hard coal seams. Jet pressure and rotation speed are important factors affecting the effectiveness of abrasive water jet rotary cutting of coal and rock. Clarifying the mechanical characteristics and laws of abrasive water jet rotary cutting of hard coal is a prerequisite for reasonably matching jet pressure and rotation speed. This article adopts a combination of numerical simulation and experimental research to analyze the influence of different jet pressure and rotation speed matching relationships on the mechanical mechanism of jet impact on the target body, and clarify the influence rules of different jet pressure and rotation speed on the cutting effect of abrasive water jet rotation. The research results indicate that the normal force generated by the high-speed impact of abrasive particles on coal and rock mainly depends on the jet pressure, while the tangential force depends on both the jet pressure and the rotational speed. The normal force and tangential force have different effects on the impact of abrasive particles on coal breaking, and together determine the effect of abrasive water jet rotation cutting coal and rock. When the jet pressure is less than 25 MPa, the cutting depth increases with the increase of jet pressure, and the rate of increase in cutting depth significantly decreases after exceeding 25 MPa. Under the condition of constant cutting time, the cutting depth of abrasive jet rotation always shows an upward trend with the increase of rotation speed. Propose to use the optimal matching coefficient n as the evaluation index for cutting effects at different speeds under the same jet pressure. It was found that there were significant differences in the value of n between submerged and non submerged conditions under different working conditions. The optimal parameter matching coefficient n for non submerged conditions is
[1] |
刘大锰,贾奇锋,蔡益栋. 中国煤层气储层地质与表征技术研究进展[J]. 煤炭科学技术,2022,50(1):196−203. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201019
LIU Dameng,JIA Qifeng,CAI Yidong. Research progress on coalbed methane reservoir geology and characterization technology in China[J]. Coal Science and Technology,2022,50(1):196−203. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201019
|
[2] |
徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215.
XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215.
|
[3] |
黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.
HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.
|
[4] |
曹垚林. 水力化技术防治煤与瓦斯突出研究现状及展望[J]. 煤矿安全,2020,51(10):60−66.
CAO Yaolin. Research status and prospect of coal and gas outburst prevention and control by hydraulic technology[J]. Safety in Coal Mines,2020,51(10):60−66.
|
[5] |
刘勇,张汶定,陈长江,等. 松软煤层无水化增透理论及技术发展趋势[J/OL]. 煤炭学报,1−30[2025−01−16]. https://doi.org/10.13225/j.cnki.jccs.2024.0480.
LIU Yong, ZHANG Wending, CHEN Changjiang, et al. Prospects for the development of the theory andtechnology of non-hydration penetrationenhancement in soft coal seams[J/OL]. Journal of China Coal Society, 1−30[2024−09−30]. https://doi.org/10.13225/j.cnki.jccs.2024.0480.
|
[6] |
王国法,任世华,庞义辉,等. 煤炭工业“十三五” 发展成效与“双碳” 目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8.
WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China’s coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology,2021,49(9):1−8.
|
[7] |
谢和平. “深部岩体力学与开采理论” 研究构想与预期成果展望[J]. 工程科学与技术,2017,49(2):1−16.
XIE Heping. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences,2017,49(2):1−16.
|
[8] |
李伟. 深部煤炭资源智能化开采技术现状与发展方向[J]. 煤炭科学技术,2021,49(1):139−145.
LI Wei. Current status and development direction of intelligent mining technology for deep coal resources[J]. Coal Science and Technology,2021,49(1):139−145.
|
[9] |
陈向军,杜云飞,李立杨. 煤体水力化措施综合消突作用研究[J]. 煤炭科学技术,2017,45(6):43−49.
CHEN Xiangjun,DU Yunfei,LI Liyang. Study on comprehensive outburst elimination effect of hydraulic measures applied to coal mass[J]. Coal Science and Technology,2017,45(6):43−49.
|
[10] |
袁亮,林柏泉,杨威. 我国煤矿水力化技术瓦斯治理研究进展及发展方向[J]. 煤炭科学技术,2015,43(1):45−49.
YUAN Liang,LIN Baiquan,YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology,2015,43(1):45−49.
|
[11] |
NAIR A,KHAN M A,SIVAKUMAR M,et al. Geometric characteristics analysis of hole making through abrasive water jet drilling[J]. Materials Today:Proceedings,2021,39:338−347.
|
[12] |
杜春宁. 水力冲孔增透技术在单一松软低透煤层的应用试验[J]. 能源与节能,2023(9):173−176. doi: 10.3969/j.issn.2095-0802.2023.09.051
DU Chunning. Application test of permeability improving technology of hydraulic punching in single soft and low permeability coal seams[J]. Energy and Energy Conservation,2023(9):173−176. doi: 10.3969/j.issn.2095-0802.2023.09.051
|
[13] |
李然,王初亮,刘波,等. 兆瓦级煤矿井下压裂泵系统的研制及应用[J/OL]. 煤炭科学技术,1−9[2024−09−30]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240613.1636.013.html
LI Ran,WANG Chuliang,LlU Bo,et al. Research and application onmegawatt level intelligentfracturing pump system in coal mine[J]. Coal Science and Technology,1−9[2024−09−30]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240613.1636.013.html
|
[14] |
唐永志,李平,朱贵旺,等. 超高压水力割缝技术在中等硬度低透气性煤层的应用[J]. 煤炭科学技术,2022,50(12):43−49.
TANG Yongzhi,LI Ping,ZHU Guiwang,et al. Application of ultra-high pressure hydraulic slotting technology in medium hardness and low permeability coal seam[J]. Coal Science and Technology,2022,50(12):43−49.
|
[15] |
胡焰,陈加东,戴庆文,等. 磨料射流加工技术的发展与研究现状[J]. 表面技术,2022,51(11):80−98.
HU Yan,CHEN Jiadong,DAI Qingwen,et al. Recent advances and status of abrasive jet machining technology[J]. Surface Technology,2022,51(11):80−98.
|
[16] |
魏建平,王梦园,杨恒,等. 磨料质量分数对预混合磨料水射流破岩效果的影响[J]. 煤炭学报,2023,48(1):251−262.
WEI Jianping,WANG Mengyuan,YANG Heng,et al. Influence of abrasive mass fraction on the effect of premixed abrasive water jets on rock breaking[J]. Journal of China Coal Society,2023,48(1):251−262.
|
[17] |
袁瑞甫,陈立峰,张志刚,等. 浆液磨料水射流切割能力试验及切割深度预测模型[J]. 河南理工大学学报(自然科学版),2023,42(6):11−18.
YUAN Ruifu,CHEN Lifeng,ZHANG Zhigang,et al. Experimental study and predictive model for the cutting capability and cutting depth of slurry abrasive water jet[J]. Journal of Henan Polytechnic University (Natural Science),2023,42(6):11−18.
|
[18] |
黎成,赵一聪,邱梦,等. 磨料射流重复切割花岗岩效率影响因素及能耗研究[J]. 隧道建设(中英文),2023,43(12):2018−2025.
LI Cheng,ZHAO Yicong,QIU Meng,et al. Influencing factors of efficiency and energy consumption in abrasive water jet repetitive cutting of granite[J]. Tunnel Construction,2023,43(12):2018−2025.
|
[19] |
张志刚,袁瑞甫,姚远航,等. 新型混合磨料方式下磨料水射流切割中粒砂岩试验研究[J]. 河南理工大学学报(自然科学版),2022,41(3):16−21. doi: 10.3969/j.issn.1673-9787.2022.3.jzgxyxb202203003
ZHANG Zhigang,YUAN Ruifu,YAO Yuanhang,et al. Experimental study on abrasive water jet cutting medium granular sandstone under new mixed abrasive method[J]. Journal of Henan Polytechnic University (Natural Science),2022,41(3):16−21. doi: 10.3969/j.issn.1673-9787.2022.3.jzgxyxb202203003
|
[20] |
GE Z L,SHANGGUAN J M,ZHOU Z,et al. Investigation of fracture damage and breaking energy consumption of hard rock repeatedly cut by abrasive water jet[J]. Rock Mechanics and Rock Engineering,2023,56(4):3215−3230. doi: 10.1007/s00603-023-03230-5
|
[21] |
吴亮. 含固体颗粒的两相流界面变化的数值研究:DEM-VOF方法的实现[D]. 天津:天津大学,2018.
WU Liang. Numerical study on interface change of two-phase flow with solid particles:Realization of:DEM-VOF method[D]. Tianjin:Tianjin University,2018.
|
[22] |
CHEN C J,WEI J P,ZHANG T G,et al. Effect of abrasive volume fraction on energy utilization in suspension abrasive water jets based on VOF-DEM method[J]. Powder Technology,2025,449:120427. doi: 10.1016/j.powtec.2024.120427
|
[23] |
刘勇,张慧栋,魏建平,等. 基于拉法尔喷嘴的磨料气体射流加速规律研究[J]. 中国安全生产科学技术,2018,14(11):26−32.
LIU Yong,ZHANG Huidong,WEI Jianping,et al. Study on acceleration laws of abrasive gas jet based on Laval nozzle[J]. Journal of Safety Science and Technology,2018,14(11):26−32.
|
[24] |
CHEN C J,LIU Y,TANG J R,et al. Effect of nozzle pressure ratios on the flow and distribution of abrasive particles in abrasive air jet machining[J]. Powder Technology,2022,397:117114. doi: 10.1016/j.powtec.2022.117114
|
[25] |
JIANG W,XU X Y,WEN Z H,et al. Applying the similarity theory to model dust dispersion during coal-mine tunneling[J]. Process Safety and Environmental Protection,2021,148:415−427. doi: 10.1016/j.psep.2020.10.026
|
[26] |
卢义玉,张赛,刘勇,等. 脉冲水射流破岩过程中的应力波效应分析[J]. 重庆大学学报,2012,35(1):117−124. doi: 10.11835/j.issn.1000-582X.2012.01.022
LU Yiyu,ZHANG Sai,LIU Yong,et al. Analysis on stress wave effect during the process of rock breaking by pulsed jet[J]. Journal of Chongqing University,2012,35(1):117−124. doi: 10.11835/j.issn.1000-582X.2012.01.022
|
[27] |
黄振飞. 煤层水力割缝影响因素及割缝深度预测模型研究[D]. 北京:煤炭科学研究总院,2017.
HUANG Zhenfei. Research on the influencing factors of coal seam hydraulic cutting and the prediction model of cutting depth [D]. Beijing:China Coal Research Institute,2017
|
[28] |
段康廉,冯增朝,赵阳升,等. 低渗透煤层钻孔与水力割缝瓦斯排放的实验研究[J]. 煤炭学报,2002,27(1):50−53. doi: 10.3321/j.issn:0253-9993.2002.01.011
DUAN Kanglian,FENG Zengchao,ZHAO Yangsheng,et al. Testing study of methane drainage by bore and hydraulic-cutting seam from low permeability coal seam[J]. Journal of China Coal Society,2002,27(1):50−53. doi: 10.3321/j.issn:0253-9993.2002.01.011
|