Advance Search
WANG Haijun. Construction exploration and application prospect of the large model in mining industry[J]. Coal Science and Technology,2024,52(11):45−59. DOI: 10.12438/cst.2024-1382
Citation: WANG Haijun. Construction exploration and application prospect of the large model in mining industry[J]. Coal Science and Technology,2024,52(11):45−59. DOI: 10.12438/cst.2024-1382

Construction exploration and application prospect of the large model in mining industry

More Information
  • Received Date: May 20, 2024
  • Accepted Date: November 05, 2024
  • Available Online: November 06, 2024
  • Coal is the cornerstone for energy security. In the current background of accelerating the development of the digital economy and actively and steadily promoting the “dual carbon” goal, the coal industry urgently needs to deepen digital transformation and intelligent construction. In this background, exploring the introduction of large model technology to empower coal industry applications, making full use of the industry’s massive knowledge data, and accelerating the digital development of the coal industry has become the focus of industry attention. Based on this, this paper sorts out the development status of generative large model technology, expounds the application status and effectiveness of large model technology in multiple fields, introduces the key technologies of industry large model such as data processing (cleaning, balancing, enhancement, etc.), text tokenization, pre-training and fine-tuning, prompt word optimization, vector embedding, alignment, retrieval enhancement generation and other large model technologies, and demonstrates that the industry large model inherits the advantages of the general large model of “general” and at the same time has the characteristics of “specialization”. This paper deeply analyzes the challenges of high R&D investment cost, difficulty in collecting high-quality data, and high difficulty in multimodal data fusion technology in the application of large model technology in the coal industry, and summarizes in detail the construction path and phased results achieved by SolStone Mine Large Model to cope with the above challenges from six aspects: infrastructure layer, data resource layer, algorithm model layer, application service layer, security and trustworthiness and testing layer, and industry ecological layer, and finally looks forward to the production and technological changes brought by the development of large model technology to the coal industry. It is pointed out that the construction of large models in the mining industry should follow the path of combining open access models and industry data, give full play to the tool attributes of large models to the application in scenarios, and build an application ecology combining “production-learning-research-application”, so as to help the development of new quality productivity in the mining industry.

  • [1]
    王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
    [2]
    王国法,任世华,庞义辉,等. 煤炭工业“十三五” 发展成效与“双碳” 目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8.

    WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China’s coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology,2021,49(9):1−8.
    [3]
    王双明,刘浪,赵玉娇,等. “双碳” 目标下赋煤区新能源开发——未来煤矿转型升级新路径[J]. 煤炭科学技术,2023,51(1):59−79.

    WANG Shuangming,LIU Lang,ZHAO Yujiao,et al. New energy exploitation in coal-endowed areas under the target of “double carbon”:A new path for transformation and upgrading of coal mines in the future[J]. Coal Science and Technology,2023,51(1):59−79.
    [4]
    康红普,任世华,王保强,等. 煤炭工业数字化发展战略研究[J]. 中国工程科学,2023,25(6):170−178. doi: 10.15302/J-SSCAE-2023.06.021

    KANG Hongpu,REN Shihua,WANG Baoqiang,et al. Digital development strategy of coal industry[J]. Strategic Study of CAE,2023,25(6):170−178. doi: 10.15302/J-SSCAE-2023.06.021
    [5]
    王海军,黄万慧,王洪磊. 煤矿智能化建设中发展新质生产力的内涵、挑战与路径[J]. 智能矿山,2024,5(7):2−8.

    WANG Haijun,HUANG Wanhui,WANG Honglei. Connotation,challenge and path of developing new quality productivity in intelligent construction of coal mines[J]. Journal of Intelligent Mine,2024,5(7):2−8.
    [6]
    袁惊柱. 我国煤炭行业数字化转型面临的机遇及政策建议[J]. 中国发展观察,2022(10):106−109,128.

    YUAN Jingzhu. Opportunities and policy suggestions for digital transformation of China’s coal industry[J]. China Development Observation,2022(10):106−109,128.
    [7]
    程健,李昊,马昆,等. 矿井视觉计算体系架构与关键技术[J]. 煤炭科学技术,2023,51(9):202−218. doi: 10.12438/cst.2023-0152

    CHENG Jian,LI Hao,MA Kun,et al. Architecture and key technologies of coalmine underground vision computing[J]. Coal Science and Technology,2023,51(9):202−218. doi: 10.12438/cst.2023-0152
    [8]
    祁和刚,张建中,武光城,等. 构建“煤智云” 大数据中心 引领煤炭产业数字化转型[J]. 数据,2022(5):22−25.

    QI Hegang,ZHANG Jianzhong,WU Guangcheng,et al. Building a “coal smart cloud” big data center and leading the digital transformation of coal industry[J]. Data,2022(5):22−25.
    [9]
    刘具,秦坤,王海燕,等. 煤炭企业数字化转型建设路径研究[J]. 煤炭工程,2024,56(6):203−210.

    LIU Ju,QIN Kun,WANG Haiyan,et al. Thoughts on digital transformation path of coal enterprises[J]. Coal Engineering,2024,56(6):203−210.
    [10]
    刘学博,户保田,陈科海,等. 大模型关键技术与未来发展方向——从ChatGPT谈起[J]. 中国科学基金,2023,37(5):758−766.

    LIU Xuebo,HU Baotian,CHEN Kehai,et al. Key technologies and future development directions of large language models:Insights from ChatGPT[J]. Bulletin of National Natural Science Foundation of China,2023,37(5):758−766.
    [11]
    张熙,杨小汕,徐常胜. ChatGPT及生成式人工智能现状及未来发展方向[J]. 中国科学基金,2023,37(5):743−750.

    ZHANG Xi,YANG Xiaoshan,XU Changsheng. Current state and future development directions of ChatGPT and generative artificial intelligence[J]. Bulletin of National Natural Science Foundation of China,2023,37(5):743−750.
    [12]
    张乾君. AI大模型发展综述[J]. 通信技术,2023,56(3):255−262.

    ZHANG Qianjun. Survey on the development of AI large model[J]. Communications Technology,2023,56(3):255−262.
    [13]
    罗锦钊,孙玉龙,钱增志,等. 人工智能大模型综述及展望[J]. 无线电工程,2023,53(11):2461−2472. doi: 10.3969/j.issn.1003-3106.2023.11.001

    LUO Jinzhao,SUN Yulong,QIAN Zengzhi,et al. Overview and prospect of artificial intelligence large models[J]. Radio Engineering,2023,53(11):2461−2472. doi: 10.3969/j.issn.1003-3106.2023.11.001
    [14]
    刘合,任义丽,李欣,等. 油气行业人工智能大模型应用研究现状及展望[J]. 石油勘探与开发,2024,51(4):910−923. doi: 10.11698/PED.20240254

    LIU He,REN Yili,LI Xin,et al. Research status and application of artificial intelligence large models in the oil and gas industry[J]. Petroleum Exploration and Development,2024,51(4):910−923. doi: 10.11698/PED.20240254
    [15]
    郭旺,杨雨森,吴华瑞,等. 农业大模型:关键技术、应用分析与发展方向[J]. 智慧农业(中英文),2024,6(2):1−13.

    GUO Wang,YANG Yusen,WU Huarui,et al. Big models in agriculture:Key technologies,application and future directions[J]. Smart Agriculture,2024,6(2):1−13.
    [16]
    MINAEE S,MIKOLOV T,NIKZAD N,et al. Large language models:A survey[J]. ArXiv,2024:2402.06196.
    [17]
    李戈,彭鑫,王千祥,等. 大模型:基于自然交互的人机协同软件开发与演化工具带来的挑战[J]. 软件学报,2023,34(10):4601−4606.

    LI Ge,PENG Xin,WANG Qianxiang,et al. Challenges from LLMs as a natural language based human-machine collaborative tool for software development and evolution[J]. Journal of Software,2023,34(10):4601−4606.
    [18]
    HADI M U,QURESHI R,SHAH A,et al. Large language models:A comprehensive survey of its applications,challenges,limitations,and future prospects[J]. TechRxiv,2023:23589741.
    [19]
    LAFFERTY J,ZHAI C X. Document language models,query models,and risk minimization for information retrieval[C]//Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. New Orleans Louisiana USA. ACM,2001:111‒119.
    [20]
    AHMED K,KESKAR N,SOCHER R. Weighted transformer network for machine translation[J]. ArXiv ,2017:1711.02132.
    [21]
    XUE L T,CONSTANT N,ROBERTS A,et al. MT5:A massively multilingual pre-trained text-to-text transformer[J]. ArXiv,2020:2010.11934.
    [22]
    张良培,张乐飞,袁强强. 遥感大模型:进展与前瞻[J]. 武汉大学学报(信息科学版),2023,48(10):1574−1581.

    ZHANG Liangpei,ZHANG Lefei,YUAN Qiangqiang. Large remote sensing model:Progress and prospects[J]. Geomatics and Information Science of Wuhan University,2023,48(10):1574−1581.
    [23]
    SHANNON C E. Prediction and entropy of printed English[J]. The Bell System Technical Journal,1951,30(1):50−64. doi: 10.1002/j.1538-7305.1951.tb01366.x
    [24]
    MIKOLOV T,KOMBRINK S,BURGET L,et al. Extensions of recurrent neural network language model[C]//2011 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Prague,Czech Republic. IEEE,2011:5528-5531.
    [25]
    ZHANG J J,ZONG C Q. Deep neural networks in machine translation:an overview[J]. IEEE Intelligent Systems,2015,30(5):16−25. doi: 10.1109/MIS.2015.69
    [26]
    KENTER T,BORISOV A,VAN GYSEL C,et al. Neural networks for information retrieval[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. Shinjuku Tokyo Japan. ACM,2017:1403–1406.
    [27]
    OpenAI全新发布o1模型:我们正式迈入了下一个时代[EB/OL]. (2024-09-13)[2024-10-09] https://mp.weixin.qq.com/s/edpeHU_q6I4BPmHE2-daIQ.
    [28]
    车万翔,窦志成,冯岩松,等. 大模型时代的自然语言处理:挑战、机遇与发展[J]. 中国科学:信息科学,2023,53(9):1645−1687. doi: 10.1360/SSI-2023-0113

    CHE Wanxiang,DOU Zhicheng,FENG Yansong,et al. Towards a comprehensive understanding of the impact of large language models on natural language processing:challenges,opportunities and future directions[J]. Scientia Sinica (Informationis),2023,53(9):1645−1687. doi: 10.1360/SSI-2023-0113
    [29]
    张俊,徐箭,许沛东,等. 人工智能大模型在电力系统运行控制中的应用综述及展望[J]. 武汉大学学报(工学版),2023,56(11):1368−1379.

    ZHANG Jun,XU Jian,XU Peidong,et al. Overview and prospect of application of artificial intelligence large model in power system operation control[J]. Engineering Journal of Wuhan University,2023,56(11):1368−1379.
    [30]
    ZHAO W X,ZHOU K,LI J,et al. A survey of large language models[J]. ArXiv,2023:2303.18223.
    [31]
    CHANG Y P,WANG X,WANG J D,et al. A survey on evaluation of large language models[J]. ACM Transactions on Intelligent Systems and Technology,2024,15(3):1−45.
    [32]
    ZHAO H Y,CHEN H J,YANG F,et al. Explainability for large language models:a survey[J]. ACM Transactions on Intelligent Systems and Technology,2024,15(2):1−38.
    [33]
    言佳润,鲜于波. 面向中文网络对话文本的论辩挖掘——基于微调与提示学习的大模型算法[J]. 中文信息学报,2023,37(10):139−148. doi: 10.3969/j.issn.1003-0077.2023.10.016

    YAN Jiarun,XIANYU Bo. Argument mining for Chinese web dialogue texts—model approach via fine-tuning and prompt[J]. Journal of Chinese Information Processing,2023,37(10):139−148. doi: 10.3969/j.issn.1003-0077.2023.10.016
    [34]
    MIN B N,ROSS H,SULEM E,et al. Recent advances in natural language processing via large pre-trained language models:a survey[J]. ACM Computing Surveys,2024,56(2):1−40.
    [35]
    JIN M,WEN Q,LIANG Y,et al. Large models for time series and spatio-temporal data:A survey and outlook[J]. ArXiv,2023:2310.10196.
    [36]
    YIN S,FU C,ZHAO S,et al. A survey on multimodal large language models[J]. ArXiv,2023:2306.13549.
    [37]
    FAN A,GOKKAYA B,HARMAN M,et al. Large language models for software engineering:Survey and open problems[C]//2023 IEEE/ACM International Conference on Software Engineering:Future of Software Engineering (ICSE-FoSE). Melbourne,Australia. IEEE,2023:31-53.
    [38]
    GALLEGOS I O,ROSSI R A,BARROW J,et al. Bias and fairness in large language models:A survey[J]. Computational Linguistics,2024,50(3):1097−1179. doi: 10.1162/coli_a_00524
    [39]
    KUNG T H,CHEATHAM M,MEDENILLA A,et al. Performance of ChatGPT on USMLE:Potential for AI-assisted medical education using large language models[J]. PLoS Digital Health,2023,2(2):e0000198. doi: 10.1371/journal.pdig.0000198
    [40]
    KASNECI E,SESSLER K,KÜCHEMANN S,et al. ChatGPT for good? On opportunities and challenges of large language models for education[J]. Learning and Individual Differences,2023,103:102274. doi: 10.1016/j.lindif.2023.102274
    [41]
    BLATTMANN A,ROMBACH R,OKTAY K,et al. Retrieval-augmented diffusion models[J]. Advances in Neural Information Processing Systems,2022,35:15309−15324.
    [42]
    THIRUNAVUKARASU A J,TING D S J,ELANGOVAN K,et al. Large language models in medicine[J]. Nature Medicine,2023,29(8):1930−1940. doi: 10.1038/s41591-023-02448-8
    [43]
    LUITSE D,DENKENA W. The great transformer:Examining the role of large language models in the political economy of AI[J]. Big Data & Society,2023,8(2):1−14.
    [44]
    HACKER P,ENGEL A,MAUER M. Regulating ChatGPT and other large generative AI models[C]//2023 ACM Conference on Fairness,Accountability,and Transparency. Chicago IL USA. ACM,2023:1112–1123.
    [45]
    LIANG W X,TADESSE G A,HO D,et al. Advances,challenges and opportunities in creating data for trustworthy AI[J]. Nature Machine Intelligence,2022,4:669−677. doi: 10.1038/s42256-022-00516-1
    [46]
    WU T S,TERRY M,CAI C J. AI chains:transparent and controllable human-AI interaction by chaining large language model prompts[C]//CHI Conference on Human Factors in Computing Systems. New Orleans LA USA. ACM,2022:1–22.
    [47]
    DE ANGELIS L,BAGLIVO F,ARZILLI G,et al. ChatGPT and the rise of large language models:The new AI-driven infodemic threat in public health[J]. Frontiers in Public Health,2023,11:1166120. doi: 10.3389/fpubh.2023.1166120
    [48]
    MOOR M,BANERJEE O,ABAD Z S H,et al. Foundation models for generalist medical artificial intelligence[J]. Nature,2023,616(7956):259−265. doi: 10.1038/s41586-023-05881-4
    [49]
    LI Y H,WANG S F,DING H,et al. Large language models in finance:a survey[C]//4th ACM International Conference on AI in Finance. Brooklyn NY USA. ACM,2023:374–382.
    [50]
    CHEN J W,LIN H Y,HAN X P,et al. Benchmarking large language models in retrieval-augmented generation[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2024,38(16):17754−17762. doi: 10.1609/aaai.v38i16.29728
    [51]
    杜宝祥,马志强,王春喻,等. 结合微调与重排序的情感可控对话生成方法[J]. 计算机科学与探索,2023,17(4):953−963. doi: 10.3778/j.issn.1673-9418.2106060

    DU Baoxiang,MA Zhiqiang,WANG Chunyu,et al. Emotion controllable dialogue generation method combining fine-tuning and reranking[J]. Journal of Frontiers of Computer Science and Technology,2023,17(4):953−963. doi: 10.3778/j.issn.1673-9418.2106060
    [52]
    DEVLIN J,CHANG M W,LEE K,et al. BERT:Pre-training of deep bidirectional transformers for language understanding[C]//BURSTEIN J,DORAN C,SOLORIO T. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg,2019:4171‒4186.
    [53]
    RADFORD A,NARASIMHAN K,SALIMANS T,et al. Improving language understanding by generative pre-training[DB/OL]. [2024-04-12]. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
    [54]
    文森,钱力,胡懋地,等. 基于大语言模型的问答技术研究进展综述[J]. 数据分析与知识发现,2024,8(6):16−29.

    WEN Sen,QIAN Li,HU Maodi,et al. Review of research progress on question-answering techniques based on large language models[J]. Data Analysis and Knowledge Discovery,2024,8(6):16−29.
    [55]
    张金营,王天堃,么长英,等. 基于大语言模型的电力知识库智能问答系统构建与评价[J/OL]. 计算机科学,1‒10. [2024-08-12]. https://link.cnki.net/urlid/50.1075.TP.20240528.0931.002.html.
    [56]
    WU S,IRSOY O,LU S,et al. BloombergGPT:A Large Language Model for Finance[J]. ArXiv,2303.17564.
    [57]
    罗世杰. 金融大模型:应用、风险与制度应对[J]. 金融发展研究,2024(6):70−78.

    LUO Shijie. The mega model of finance:applications,risks and institutional responses[J]. Journal of Financial Development Research,2024(6):70−78.
    [58]
    HOU Y X,QIAN S D. Bigdata analysis implementation in financial field:evidence from China merchants bank & ant group[J]. Highlights in Business,Economics and Management,2023,10:443−448. doi: 10.54097/hbem.v10i.8137
    [59]
    曾晨光,杨蕊菱,王宇鹏,等. 金融行业中的大语言模型[J]. 数字经济,2023(11):64−67.
    [60]
    SINGHAL K,AZIZI S,TU T,et al. Large language models encode clinical knowledge[J]. Nature,2023,620(7972):172−180. doi: 10.1038/s41586-023-06291-2
    [61]
    SINGHAL K,TU T,GOTTWEIS J,et al. Towards expert-level medical question answering with large language models[J]. ArXiv,2023:2305.09617
    [62]
    TU T,AZIZI S,DRIESS D,et al. Towards generalist biomedical AI[J]. ArXiv,2024:2307.14334.
    [63]
    郑琰莉,韩福海,李舒玉,等. 人工智能大模型在医疗领域的应用现状与前景展望[J]. 医学信息学杂志,2024,45(6):24−29.

    ZHENG Yanli,HAN Fuhai,LI Shuyu,et al. Application status and prospect of artificial intelligence large models in medicine[J]. Journal of Medical Informatics,2024,45(6):24−29.
    [64]
    LEE J,YOON W,KIM S,et al. BioBERT:a pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics,2020,36(4):1234−1240. doi: 10.1093/bioinformatics/btz682
    [65]
    WANG D Q,FENG L Y,YE J G,et al. Accelerating the integration of ChatGPT and other large-scale AI models into biomedical research and healthcare[J]. MedComm – Future Medicine,2023,2(2):43. doi: 10.1002/mef2.43
    [66]
    YUE S,CHEN W,WANG S,et al. DISC-LawLLM:fine-tuning large language models for intelligent legal services[J]. ArXiv,2023,2309.11325.
    [67]
    ZHOU Z,SHI J X,SONG P X,et al. LawGPT:A Chinese legal knowledge-enhanced large language model[J]. ArXiv,2024,2406.04614.
    [68]
    刘邦奇,聂小林,王士进,等. 生成式人工智能与未来教育形态重塑:技术框架、能力特征及应用趋势[J]. 电化教育研究,2024,45(1):13−20.

    LIU Bangqi,NIE Xiaolin,WANG Shijin,et al. Generative artificial intelligence and the reshaping of future education:technical framework,capability characteristics and application trends[J]. E-education Research,2024,45(1):13−20.
    [69]
    曹培杰,谢阳斌,武卉紫,等. 教育大模型的发展现状、创新架构及应用展望[J]. 现代教育技术,2024,34(2):5−12.

    CAO Peijie,XIE Yangbin,WU Huizi,et al. The development status,innovation architecture and application prospects of educational big models[J]. Modern Educational Technology,2024,34(2):5−12.
    [70]
    卢宇,余京蕾,陈鹏鹤,等. 多模态大模型的教育应用研究与展望[J]. 电化教育研究,2023,44(6):38−44.

    LU Yu,YU Jinglei,CHEN Penghe,et al. Study and prospect of the applications of large multimodal models in education[J]. e-Education Research,2023,44(6):38−44.
    [71]
    KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha,Qatar. Stroudsburg,PA,USA:Association for Computational Linguistics,2014:1746–1751.
    [72]
    山东能源集团携手华为发布盘古矿山大模型 共建智能矿山[EB/OL]. (2023-07-12)[2024-08-12]. http://www.xinhuanet.com/tech/20230720/97d8b97887584cbb9cd79ab23624898d/c.html.
    [73]
    讯飞工业大模型(矿山版)震撼煤炭界[EB/OL]. (2023-09-28)[2024-08-12]. https://mp.zgkyb.com/m/news/88341.
    [74]
    李远. 中科慧拓发布愚公YUKON矿山大模型[N]. 中国能源报,2024-06-10(16).
    [75]
    发布!煤炭行业再添一重量级大模型[EB/OL]. (2024-04-22)[2024-08-12]. https://cpnn.com.cn/news/mt/202404/t20240422_1695365_wap.html.
    [76]
    中国电信开源星辰AI大模型:央企中首个完成LLM研发和开源的选手诞生[EB/OL]. (2024-01-07)[2024-08-12]. https://cloud.tencent.com/developer/article/2380117.
    [77]
    赋能煤矿人工智能建设“太阳石矿山大模型”正式发布[EB/OL]. (2024-04-08)[2024-08-12]. http://www3.xinhuanet.com/energy/20240408/a1c6d90938594471aeb51be73150421a/c.html.
    [78]
    LIU P F,QIU X P,CHEN X C,et al. Multi-timescale long short-term memory neural network for modelling sentences and documents[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon,Portugal. Stroudsburg,PA,USA:Association for Computational Linguistics,2015:2326–2335.
    [79]
    卢官明,丛文康,魏金生,等. 基于CNN和LSTM的脑电信号情感识别[J]. 南京邮电大学学报(自然科学版),2021,41(1):58−64.

    LU Guanming,CONG Wenkang,WEI Jinsheng,et al. EEG-based emotion recognition using CNN and LSTM[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition),2021,41(1):58−64.
    [80]
    ZHANG X,ZHAO J,LECUN Y. Character-level convolutional networks for text classification[J]. Advances in Neural Information Processing Systems,2015,28:649−657.
    [81]
    栗婧,张志珍,杜璇,等. 基于文本分类技术的煤矿违章行为统计方法研究[J]. 矿业科学学报,2022,7(3):344−353.

    LI Jing,ZHANG Zhizhen,DU Xuan,et al. Statistical method of coal mine violations based on text classification technology[J]. Journal of Mining Science and Technology,2022,7(3):344−353.
    [82]
    闫琰,杨梦,周法国,等. 基于Fasttext网络的煤矿事故案例文本分类方法对比[J]. 煤炭工程,2021,53(11):186−192.

    YAN Yan,YANG Meng,ZHOU Faguo,et al. Comparison of text classification methods of coal mine accident cases based on Fasttext network[J]. Coal Engineering,2021,53(11):186−192.
    [83]
    韩博,成卫青. 基于BERT和标签混淆的文本分类模型[J]. 南京邮电大学学报(自然科学版),2024,44(3):100−108.

    HAN Bo,CHENG Weiqing. Text classification model based on BERT and label confusion[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition),2024,44(3):100−108.
  • Related Articles

    [1]AN Baifu, YI Qiaomei, ZHAO Xiang, YU Weijian, WANG Dongda, WANG Jiale. Experimental research on low and strength characteristics of coal slime based cemented filling material[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 13-21. DOI: 10.13199/j.cnki.cst.2022-1733
    [2]LI Xijian XUE Haiteng CHEN Liuyu SHEN Zhonghui XU Mingzhi XU Shiqing, . Micropore structure of outburst coal seam in Guizhou Area and its effect on gas flow[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(10).
    [3]ZHAO Junmei, RONG Lingkun, LU Cai, BAI Chunhua, WANG Li. Study on dispersion mechanism of polycarboxylatesuperplasticizer in low rank coal water slurry[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (4).
    [4]Yang Mingshun Xie Qiang Kang Shanjiao Liu Weibing LiuXin Qi Yongli Mei Changsong Li Chunqi, . Polycarboxylate dispersant of coal water mixture prepared based on lignite hydrothermal waste water[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (9).
    [5]Qi Wei. Development and Application on MJS-1 Coking Coal Giesler Fluidity Testing Machine with Double Furnace[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (7).
    [6]QU Qian-qian ZHANG Guang- hua ZHU Jun-feng WEI Ying-fei, . Study on Performances and Synthesis of Polyether Polycarboxylate Dispersant for Coal Water Slurry[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (2).
    [7]MENG Xian-liang WANG Hong-lin WU Guo-guang MIAO Zhen-yong CHU Rui-zhi LIU Ya-fei WANG Jing WANG Yan-li ZHANG Zhong-cai, . Study on Polycarboxylate Series Dispersant of Coal Water Slurry Affected to Slurry Ability of High Ash Slime[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (10).
    [8]Study on Effective Drainage Radius of Advance Borehole Based on Gas Flow Theory[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (2).
    [9]Synthesis and Research on Citric Acid Polycarboxylic Dispersant of Coal Water Slurry[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (9).
  • Cited by

    Periodical cited type(8)

    1. 宁树正,严晓云,黄少青,徐小涛,张建强,张莉,刘亢. 中国煤中锗成矿特征与勘查进展. 煤炭科学技术. 2025(01): 225-236 . 本站查看
    2. 魏迎春,张昀,李新,曹代勇,王安民,靳亮亮,宁树正. 煤与煤系铀矿产协同勘查技术方法. 煤炭科学技术. 2025(01): 216-224 . 本站查看
    3. 李鹏程. 金属矿产勘查中地质找矿技术创新措施. 世界有色金属. 2025(03): 40-42 .
    4. 张昀,魏迎春,曹代勇,李新,靳亮亮,董博,王鑫. 煤系锂及锂同位素研究进展. 煤田地质与勘探. 2025(04): 106-118 .
    5. 康红普,谢和平,王双明,任世华,张亚宁,王保强,陈佩佩,焦小淼,郑德志,任仰辉,刘跃东. 煤炭与共伴生矿产资源一体化绿色开发战略研究. 中国工程科学. 2025(02): 172-183 .
    6. 曹代勇,魏迎春,李新,张昀,徐来鑫,位金昊,董博. 煤与煤系战略性金属矿产协同勘查理论与技术体系框架探讨. 煤炭学报. 2024(01): 479-494 .
    7. 魏迎春,李新,曹代勇,张昀,宁树正,徐腾跃. 煤与煤系战略性金属矿产协同勘查模型. 地质学报. 2024(08): 2517-2530 .
    8. 毛礼鑫,朱士飞,秦云虎,刘威,赵倩,曹磊. 电厂煤及其副产品中微量元素的环境效应与资源潜力评价. 中国煤炭. 2024(12): 188-196 .

    Other cited types(0)

Catalog

    Article views (689) PDF downloads (180) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return