Citation: | WANG Hanpeng,WU Yunhao,ZHANG Bing,et al. Research status and new design concept of compressed air energy storage technology in abandoned mine[J]. Coal Science and Technology,2025,53(4):29−44. DOI: 10.12438/cst.2024-1357 |
Compressed air energy storage(CAES) can be widely used in power grid peak load shifting and large-scale new energy consumption. It has the advantages of large installed capacity, long service life, and clean environmental protection, and is regarded as one of the most promising large-scale energy storage technologies. Currently, CAES gas storage are mainly built based on layered salt caverns or salt dome. However, due to strict site selection conditions and other reasons, the development of the CAES industry is greatly limited. Recently, with the closure of a large number of mines, many underground space resources have been wasted. Therefore, using abandoned mines to build CAES power stations has enormous ecological, economic benefits and vast development prospects. This paper systematically sorts out the construction status, advantages and disadvantages of various CAES gas storages, summarizes the construction and site selection requirements of CAES gas storages in abandoned mines, and analyzes the safety risks and limiting bottlenecks faced by CAES gas storages in abandoned mines. In order to avoid the safety risks in the construction and operation of CAES gas storage, we put forward a new gas storage construction scheme “pipeline layout type abandoned mine gas storage (using large diameter seamless steel pipeline as gas storage space, filling loose filling body in the gap to bear pressure)”. Compared with traditional gas storage construction scheme, this scheme has the following advantages: Greatly reduces the site selection requirements of CAES gas storage for geological structure, surrounding rock permeability, surrounding rock stability and other conditions in the mining area, and increases the site selection range; Existing pipeline construction processes and technical equipment can be utilized to reduce the difficulty of constructing gas storage; Improve the sealing performance of CAES power station gas storage to prevent gas leakage; Improve the stress environment of surrounding rock and the stability of gas storage; Avoid the impact of corrosion on the gas storage increases its durability. Finally, takes Ezhuang abandoned coal mine as an example, this paper gives the reconstruction and construction scheme of pipeline layout gas storage. After the reconstruction and construction of gas storage is completed, the total volume can reach 4.5×105 m3, and the power generation can reach 400 MW, which can produce good economic benefits. The pipeline layout type abandoned mine gas storage provides a new idea for the development of CAES technology in abandoned mines, it has the potential for large-scale promotion and application.
[1] |
滕佳伦,李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源,2023,45(8):53−63. doi: 10.3969/j.issn.2097-0706.2023.08.007
TENG Jialun,LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality[J]. Integrated Intelligent Energy,2023,45(8):53−63. doi: 10.3969/j.issn.2097-0706.2023.08.007
|
[2] |
陈海生,凌浩恕,徐玉杰. 能源革命中的物理储能技术[J]. 中国科学院院刊,2019,34(4):450−459.
CHEN Haisheng,LING Haoshu,XU Yujie. Physical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences,2019,34(4):450−459.
|
[3] |
柴麒敏,刘伯翰,马玉洁,等. 能源转型与技术创新的全球盘点:进展与评估[J]. 气候变化研究进展,2024,20(6):747−756.
CHAI Qimin,LIU Bohan,MA Yujie,et al. Global inventory of energy transformation and technological innovation:Progress and evaluation[J]. China Industrial Economics,2024,20(6):747−756.
|
[4] |
范师嘉,许光清,赵庆,等. 考虑储能的电力系统优化与中国碳中和情景分析[J]. 中国环境科学,2024,44(5):2833−2846.
FAN Shijia,XU Guangqing,ZHAO Qing,et al. Power system optimization considering energy storage and scenario analysis of carbon neutralization in China[J]. China Industrial Economics,2024,44(5):2833−2846.
|
[5] |
高天飞. 相变储能技术的基础理论和实践应用[J]. 太阳能学报,2024,45(2):500.
GAO Tianfei. Basic theory and practical application of phase change energy storage technology[J]. Acta Energiae Solaris Sinica,2024,45(2):500.
|
[6] |
HU B W,YU L Y,MI X Z,et al. Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock Caverns[J]. International Journal of Mining Science and Technology,2024,34(4):531−543. doi: 10.1016/j.ijmst.2024.04.005
|
[7] |
BAI J Y,WEI W,CHEN L J,et al. Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation[J]. Energy,2020,206:118051. doi: 10.1016/j.energy.2020.118051
|
[8] |
YANG C H,WANG T T,CHEN H S. Theoretical and technological challenges of deep underground energy storage in China[J]. Engineering,2023,25:168−181. doi: 10.1016/j.eng.2022.06.021
|
[9] |
蒋睿,李明佳,马腾,等. 耦合熔盐储热的超临界二氧化碳循环系统变负荷发电效率提升方法[J]. 西安交通大学学报,2024,58(12):11−21. doi: 10.7652/xjtuxb202412002
JIANG Rui,LI Mingjia,MA Teng,et al. Method for enhancing load-following power generation efficiency of SCO2 cycle systems coupled with molten salt thermal energy storage[J]. Journal of Xi’an Jiaotong University,2024,58(12):11−21. doi: 10.7652/xjtuxb202412002
|
[10] |
WU H,HAO J N,JIANG Y L,et al. Alkaline-based aqueous sodium-ion batteries for large-scale energy storage[J]. Nature Communications,2024,15(1):575. doi: 10.1038/s41467-024-44855-6
|
[11] |
BAZDAR E,SAMETI M,NASIRI F,et al. Compressed air energy storage in integrated energy systems:A review[J]. Renewable and Sustainable Energy Reviews,2022,167:112701. doi: 10.1016/j.rser.2022.112701
|
[12] |
BUDT M,WOLF D,SPAN R,et al. A review on compressed air energy storage:Basic principles,past milestones and recent developments[J]. Applied Energy,2016,170:250−268. doi: 10.1016/j.apenergy.2016.02.108
|
[13] |
DÍAZ-GONZÁLEZ F,SUMPER A,GOMIS-BELLMUNT O,et al. A review of energy storage technologies for wind power applications[J]. Renewable and Sustainable Energy Reviews,2012,16(4):2154−2171. doi: 10.1016/j.rser.2012.01.029
|
[14] |
QUAST P,CROTOGINO F. Initial experience with the compressed-air energy storage(CAES) project of Nordwestdeutsche Kraftwerke AG(NWK) at Huntorf/West Germany[J]. Erdoel Erdgas Z,1979,95(9):310.
|
[15] |
HOUNSLOW D R,GRINDLEY W,LOUGHLIN R M,et al. The development of a combustion system for a 110 MW CAES plant[J]. Journal of Engineering for Gas Turbines and Power,1998,120(4):875−883. doi: 10.1115/1.2818482
|
[16] |
GEISSBÜHLER L,BECATTINI V,ZANGANEH G,et al. Pilot-scale demonstration of advanced adiabatic compressed air energy storage,Part 1:Plant description and tests with sensible thermal-energy storage[J]. Journal of Energy Storage,2018,17:129−139. doi: 10.1016/j.est.2018.02.004
|
[17] |
BECATTINI V,GEISSBÜHLER L,ZANGANEH G,et al. Pilot-scale demonstration of advanced adiabatic compressed air energy storage,Part 2:Tests with combined sensible/latent thermal-energy storage[J]. Journal of Energy Storage,2018,17:140−152. doi: 10.1016/j.est.2018.02.003
|
[18] |
郭丁彰,尹钊,周学志,等. 压缩空气储能系统储气装置研究现状与发展趋势[J]. 储能科学与技术,2021,10(5):1486−1493.
GUO Dingzhang,YIN Zhao,ZHOU Xuezhi,et al. Status and prospect of gas storage device in compressed air energy storage system[J]. Energy Storage Science and Technology,2021,10(5):1486−1493.
|
[19] |
万明忠,纪文栋,商浩亮,等. 压缩空气储能地下盐穴物探关键问题及处理技术[J]. 南方能源建设,2023,10(2):26−31.
WAN Mingzhong,JI Wendong,SHANG Haoliang,et al. Key problems and techniques of geophysical exploration in underground salt cavern for compressed air energy storage[J]. Southern Energy Construction,2023,10(2):26−31.
|
[20] |
刘笑驰,梅生伟,丁若晨,等. 压缩空气储能工程现状、发展趋势及应用展望[J]. 电力自动化设备,2023,43(10):38−47,102.
LIU Xiaochi,MEI Shengwei,DING Rruochen,et al. Current status,development trends,and application prospects of compressed air energy storage engineering[J]. Electric Power Automation Equipment,2023,43(10):38−47,102.
|
[21] |
郭平业,王蒙,孙晓明,等. 废弃矿井地下空间反季节循环储能研究[J]. 煤炭学报,2022,47(6):2193−2206.
GUO Pingye,WAMG Meng,SUN Xiaoming,et al. Study on off-season cyclic energy storage in underground space of abandoned mine[J]. Journal of China Coal Society,2022,47(6):2193−2206.
|
[22] |
桑树勋,袁亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451.
SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.
|
[23] |
MENÉNDEZ J,ORDÓÑEZ A,RODRIGO Á,et al. Energy from closed mines:Underground energy storage and geothermal applications[J]. Renewable and Sustainable Energy Reviews,2019,108:498−512. doi: 10.1016/j.rser.2019.04.007
|
[24] |
霍冉,徐向阳,姜耀东. 国外废弃矿井可再生能源开发利用现状及展望[J]. 煤炭科学技术,2019,47(10):267−273.
HUO Ran,XU Xiangyang,JIANG Yaodong. Status and prospect on development and utilization of renewable energy in abandoned mines abroad[J]. Coal Science and Technology,2019,47(10):267−273.
|
[25] |
CHEN X H,WANG J G. Stability analysis for compressed air energy storage cavern with initial excavation damage zone in an abandoned mining tunnel[J]. Journal of Energy Storage,2022,45:103725. doi: 10.1016/j.est.2021.103725
|
[26] |
周瑜,夏才初,赵海斌,等. 压气储能内衬洞室的空气泄漏率及围岩力学响应估算方法[J]. 岩石力学与工程学报,2017,36(2):297−309.
ZHOU Yu,XIA Caichu,ZHAO Haibin,et al. A method for estimating air leakage through inner seals and mechanical responses of the surrounding rock of lined rock Caverns for compressed air energy storage[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):297−309.
|
[27] |
SCHMIDT F,MENÉNDEZ J,KONIETZKY H,et al. Converting closed mines into giant batteries:Effects of cyclic loading on the geomechanical performance of underground compressed air energy storage systems[J]. Journal of Energy Storage,2020,32:101882. doi: 10.1016/j.est.2020.101882
|
[28] |
XU Y J,ZHOU S W,XIA C C,et al. Three-dimensional thermo-mechanical analysis of abandoned mine drifts for underground compressed air energy storage:A comparative study of two construction and plugging schemes[J]. Journal of Energy Storage,2021,39:102696. doi: 10.1016/j.est.2021.102696
|
[29] |
杨春和,王同涛. 深地储能研究进展[J]. 岩石力学与工程学报,2022,41(9):1729−1759.
YANG Chunhe,WANG Tongtao. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1729−1759.
|
[30] |
ZHOU Q,DU D M,LU C,et al. A review of thermal energy storage in compressed air energy storage system[J]. Energy,2019,188:115993. doi: 10.1016/j.energy.2019.115993
|
[31] |
王龙轩,张文,杨晓林,等. 废弃矿硐压缩空气储能研究及其应用进展[J/OL]. 煤炭科学技术,2024:1−20. [2024−08−15]. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=MTKJ20240604002&dbname=CJFD&dbcode=CJFQ.
WANG Longxuan,ZHANG Wen,YANG Xiaolin,et al. Research and application progress of compressed air energy storage in abandoned mine adit[J/OL]. China Industrial Economics,2024:1−20. [2024−08−15]. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=MTKJ20240604002&dbname=CJFD&dbcode=CJFQ.
|
[32] |
LUND H,SALGI G. The role of compressed air energy storage (CAES) in future sustainable energy systems[J]. Energy Conversion and Management,2009,50(5):1172−1179. doi: 10.1016/j.enconman.2009.01.032
|
[33] |
DRURY E,DENHOLM P,SIOSHANSI R. The value of compressed air energy storage in energy and reserve markets[J]. Energy,2011,36(8):4959−4973. doi: 10.1016/j.energy.2011.05.041
|
[34] |
HARTMANN N,VÖHRINGER O,KRUCK C,et al. Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations[J]. Applied Energy,2012,93:541−548. doi: 10.1016/j.apenergy.2011.12.007
|
[35] |
BUDT M,WOLF D,SPAN R,et al. Compressed air energy storage–an option for medium to large scale electrical-energy storage[J]. Energy Procedia,2016,88:698−702. doi: 10.1016/j.egypro.2016.06.046
|
[36] |
何青,王珂. 等温压缩空气储能技术及其研究进展[J]. 热力发电,2022,51(8):11−19.
HE Qing,WANG Ke. Isothermal compressed air energy Storage technology and its research progress[J]. Thermal Power Generation,2022,51(8):11−19.
|
[37] |
LIU X H,ZHANG Y F,SHEN J,et al. Characteristics of air cooling for cold storage and power recovery of compressed air energy storage (CAES) with inter-cooling[J]. Applied Thermal Engineering,2016,107:1−9. doi: 10.1016/j.applthermaleng.2016.06.064
|
[38] |
JAKIEL C,ZUNFT S,NOWI A. Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy:The European project AA-CAES[J]. International Journal of Energy Technology and Policy,2007,5(3):296. doi: 10.1504/IJETP.2007.014736
|
[39] |
FU H L,HUA Q S,SHI J,et al. Photothermal-assisted scheme design and thermodynamic analysis of advanced adiabatic compressed air energy storage system[J]. Renewable Energy,2023,215:118927. doi: 10.1016/j.renene.2023.118927
|
[40] |
梅生伟,李瑞,陈来军,等. 先进绝热压缩空气储能技术研究进展及展望[J]. 中国电机工程学报,2018,38(10):2893−2907.
MEI Shengwei,LI Rui,CHEN Laijun,et al. An Overview and Outlook on Advanced Adiabatic Compressed Air Energy Storage Technique[J]. Proceedings of the CSEE,2018,38(10):2893−2907.
|
[41] |
XUE W D,WANG Y,CHEN Z,et al. An integrated model with stable numerical methods for fractured underground gas storage[J]. Journal of Cleaner Production,2023,393:136268. doi: 10.1016/j.jclepro.2023.136268
|
[42] |
AL-SHAFI M,MASSARWEH O,ABUSHAIKHA A S,et al. A review on underground gas storage systems:Natural gas,hydrogen and carbon sequestration[J]. Energy Reports,2023,9:6251−6266. doi: 10.1016/j.egyr.2023.05.236
|
[43] |
MASON J E,ARCHER C L. Baseload electricity from wind via compressed air energy storage (CAES)[J]. Renewable and Sustainable Energy Reviews,2012,16(2):1099−1109. doi: 10.1016/j.rser.2011.11.009
|
[44] |
NAKAYAMA A,YAMACHI H. Thermodynamic analysis of efficiency and safety of underground air energy storage system[R]. Report of Research Center for Urban Safety and Security,Kobe University,1999,3:247−254.
|
[45] |
IBRAHIM H,ILINCA A,PERRON J. Energy storage systems:Characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews,2008,12(5):1221−1250. doi: 10.1016/j.rser.2007.01.023
|
[46] |
OULD AMROUCHE S,REKIOUA D,REKIOUA T,et al. Overview of energy storage in renewable energy systems[J]. International Journal of Hydrogen Energy,2016,41(45):20914−20927. doi: 10.1016/j.ijhydene.2016.06.243
|
[47] |
WANG S,WANG H P,WU Z D,et al. Physical simulation technologies and testing system for cavern shape control from single-well solution mining in rock salt[J]. Review of Scientific Instruments,2022,93(12):125101. doi: 10.1063/5.0108039
|
[48] |
张文,王龙轩,丛晓明,等. 新型压缩空气储能及其技术发展[J]. 科学技术与工程,2023,23(36):15335−15347. doi: 10.12404/j.issn.1671-1815.2303795
ZHANG Wen,WANG Longxuan,CONG Xiaoming,et al. New type of compressed air energy storage and its technological development[J]. Science Technology and Engineering,2023,23(36):15335−15347. doi: 10.12404/j.issn.1671-1815.2303795
|
[49] |
李建君. 中国地下储气库发展现状及展望[J]. 油气储运,2022,41(7):780−786. doi: 10.6047/j.issn.1000-8241.2022.07.004
LI Jianjun. Development status and prospect of underground gas storage in China[J]. Oil & Gas Storage and Transportation,2022,41(7):780−786. doi: 10.6047/j.issn.1000-8241.2022.07.004
|
[50] |
WANG T T,YANG C H,WANG H M,et al. Debrining prediction of a salt cavern used for compressed air energy storage[J]. Energy,2018,147:464−476. doi: 10.1016/j.energy.2018.01.071
|
[51] |
ZHAO H,HAO X. Risk assessment of zero-carbon salt cavern compressed air energy storage power station[J]. Journal of Cleaner Production,2024,468:143002. doi: 10.1016/j.jclepro.2024.143002
|
[52] |
孙冠华,朱开源,纪文栋,等. 压缩空气储能电站地下硐库的基本概念、设计理念与方法[J]. 隧道与地下工程灾害防治,2024,6(1):14−23.
SUN Guanhua,ZHU Kaiyuan,JI Wendong,et al. Basic concepts,design principles,and methods of compressed air energy storage underground caverns[J]. Hazard Control in Tunnelling and Underground Engineering,2024,6(1):14−23.
|
[53] |
蒋中明,李鹏,赵海斌,等. 压气储能浅埋地下储气库性能试验研究[J]. 岩土力学,2020,41(1):235−241,252.
JIANG Zhongming,LI Peng,ZHAO Haibin,et al. Experimental study on performance of shallow rock cavern for compressed air energy storage[J]. Rock and Soil Mechanics,2020,41(1):235−241,252.
|
[54] |
何秋德,陈宁,罗萍嘉. 基于压缩空气蓄能技术的煤矿废弃巷道再利用研究[J]. 矿业研究与开发,2013,33(4):37-39,65.
HE Qiude,CHEN Ning,LUO Pingjia. Research on reuse of abandoned roadway in coal mine based on the compressed air energy storage technology. Mining Research and Development,2013,33(4):37-39,65.
|
[55] |
杜俊生,陈结,姜德义,等. 中国废弃煤矿压气蓄能潜力与初步可行性研究[J]. 工程科学与技术,2023,55(1):253−264.
DU Junsheng,CHEN Jie,JIANG Deyi,et al. Study on the potential and pre-feasibility of compressed air energy storage of abandoned coal mines in China[J]. Advanced Engineering Sciences,2023,55(1):253−264.
|
[56] |
刘团辉. 冀中坳陷大5区块改建地下储气库可行性研究[D]. 大庆:东北石油大学,2017.
LIU Tuanhui. Research on feasibility of constructing Da5 aquifer underground gas storage in Jizhong depression[D]. Daqing:Northeast Petroleum University,2017.
|
[57] |
LI Y,LI Y,LIU Y N,et al. Compressed air energy storage in aquifers:Basic principles,considerable factors,and improvement approaches[J]. Reviews in Chemical Engineering,2019:561584.
|
[58] |
赵同彬,刘淑敏,马洪岭,等. 废弃煤矿压缩空气储能研究现状与发展趋势[J]. 煤炭科学技术,2023,51(10):163−176. doi: 10.12438/cst.2023-0131
ZHAO Tongbin,LIU Shumin,MA Hongling,et al. Research status and development trend of compressed air energy storage in abandoned coal mines[J]. Coal Science and Technology,2023,51(10):163−176. doi: 10.12438/cst.2023-0131
|
[59] |
谢和平,高明忠,刘见中,等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报,2018,43(6):1487−1503.
XIE Heping,GAO Mingzhong,LIU Jianzhong,et al. Research on exploitation and volume estimation of underground space in coal mines[J]. Journal of China Coal Society,2018,43(6):1487−1503.
|
[60] |
袁亮,姜耀东,王凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20.
YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.
|
[61] |
袁亮,杨科. 再论废弃矿井利用面临的科学问题与对策[J]. 煤炭学报,2021,46(1):16−24.
YUAN Liang,YANG Ke. Further discussion on the scientific problems and countermeasures in the utilization of abandoned mines[J]. Journal of China Coal Society,2021,46(1):16−24.
|
[62] |
顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报,2015,40(2):239−246.
GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society,2015,40(2):239−246.
|
[63] |
韩桂武, 郭书太, 周锐. 煤矿巷道储油关键技术分析[J]. 隧道与地下工程灾害防治,2024,6(1):54−63.
HAN Guiwu, GUO Shutai, ZHOU Rui. Analysis of key technology of oil storage in coal mine roadway[J]. Hazard Control in Tunnelling and Underground Engineering,2024,6(1):54−63.
|
[64] |
ZHANG C,WANG F T,BAI Q S. Underground space utilization of coalmines in China:A review of underground water reservoir construction[J]. Tunnelling and Underground Space Technology,2021,107:103657. doi: 10.1016/j.tust.2020.103657
|
[65] |
MELCHERS C,GOERKE-MALLET P. HENKEL L,et al. Experiences with mine closure in the European coal mining industry:Suggestions for reducing closure risks[J]. Mining Report,2016,52(3):212−220.
|
[66] |
ILG P,GABBERT S,WEIKARD H P. Nuclear waste management under approaching disaster:A comparison of decommissioning strategies for the German repository asse II[J]. Risk Analysis,2017,37(7):1213−1232. doi: 10.1111/risa.12648
|
[67] |
NISHIMOTO Y,TAKAGI S,KOHJIYA S,et al. Performance and characteristics of air-tight sealing material used in CAES-G/T air storage cavern[J]. Journal-Society of Rubber industry Japan,2000,73(5):225−232.
|
[68] |
张国华,王薪锦,相月,等. 压缩空气硬岩储库关键问题研究进展:气密性能、热力过程与稳定性[J]. 岩石力学与工程学报,2024,43(11):2601−2626.
ZHANG Guohua,WANG Xijin,XIANG Yue,et al. Compressed air energy storage in hard rock cavern:airtight performance,thermomechanical behavior,and stability[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(11):2601−2626.
|
[69] |
刘汉斌. 山西关闭煤矿资源利用现状及开发利用建议[J]. 煤炭经济研究,2019,39(10):78−82.
LIU Hanbin. Utilization status and development suggestions on closed coal mine resources in Shanxi Province[J]. Coal Economic Research,2019,39(10):78−82.
|
[70] |
陈晓虎. 废弃煤矿压缩空气储能硐室安全性数值模拟研究[D]. 徐州:中国矿业大学,2022.
CHEN Xiaohu. Numerical simulation research on the safety of compressed air energy storage cavern in abandoned coal mine [D]. Xuzhou:China University of Mining and Technology,2022.
|
[71] |
于欣平. 废弃矿井压缩空气储能硐室变形渗漏机制研究[D]. 济南:山东大学,2023.
YU Xinping. Research on the deformation and leakage mechanism of compressed air energy storage chamber in abandoned mines[D]. Jinan:Shandong University,2023.
|
[72] |
PEDRETTI A,VIETTI D,PEDRAZZINI M B,et al. Reuse of abandoned underground structures - the compressed air energy storage test plant in Switzerland[C]// World Tunnel Congress(WTC)/39th General Assembly of the International-Tunnelling-and-Underground-Space-Association(ITA). London,2013:35−42.
|
[73] |
刘学生,武允昊,谭云亮,等. 深部高水平应力巷道倾斜锚杆破断机制及加强支护时机[J]. 煤炭学报,2023,48(2):609−622.
LIU Xuesheng,WU Yunhao,TAN Yunliang,et al. Breaking mechanism of inclined bolts in deep mine roadway with high horizontal stress and the timing of strengthening support[J]. Journal of China Coal Society,2023,48(2):609−622.
|
[74] |
LI P,KANG H,ZHU Q,et al. Numerical and experimental investigations of concrete lined compressed air energy storage system[J]. Journal of Cleaner Production,2023,390:136153. doi: 10.1016/j.jclepro.2023.136153
|
[75] |
夏才初,徐英俊,王辰霖,等. 基于非稳态渗流过程的压气储能洞室空气渗漏率计算[J]. 岩土力学,2021,42(7):1765−1773,1793.
XIA Caichu,XU Yingjun,WANG Chenlin,et al. Calculation of air leakage rate in lined cavern for compressed air energy storage based on unsteady seepage process[J]. Rock and Soil Mechanics,2021,42(7):1765−1773,1793.
|
[76] |
吴迪. 废弃煤矿地下空间压缩空气储能的多物理场耦合理论研究[D]. 徐州:中国矿业大学,2020.
WU Di. A multiphysical coupling theory for compressed air energy storage in abandoned coal mine underground caverns[D]. Xuzhou:China University of Mining and Technology,2020.
|
[77] |
刘阳,刘峻峰,张斌,等. 我国长输天然气用管线钢的发展现状与趋势[J]. 材料热处理学报,2024,45(3):98−112.
LIU Yang,LIU Junfeng,ZHANG Bin,et al. Development status and trend of pipeline steel for long-distance natural gas transportation in China[J]. Transactions of Materials and Heat Treatment,2024,45(3):98−112.
|
[78] |
王振声,陈朋超,王巨洪. 中俄东线天然气管道智能化关键技术创新与思考[J]. 油气储运,2020,39(7):730−739.
WANG Zhensheng,CHEN Pengchao,WANG Juhong. Key technological innovations and thinking of pipeline intelligence in China-Russia eastern gas pipeline[J]. Oil & Gas Storage and Transportation,2020,39(7):730−739.
|
[79] |
冯耀荣,吉玲康,李为卫,等. 中国X80管线钢和钢管研发应用进展及展望[J]. 油气储运,2020,39(6):612−622.
FENG Yaorong,JI Lingkang,LI Weiwei,et al. Progress and prospects of research and application of X80 pipeline steel and steel pipe in China[J]. Oil & Gas Storage and Transportation,2020,39(6):612−622.
|
[80] |
刘学生,武允昊,谭云亮,等. 锚杆抗疲劳性能对深部动载扰动硐室围岩稳定性影响[J]. 中国矿业大学学报,2021,50(3):449−458.
LIU Xuesheng,WU Yunhao,TAN Yunliang,et al. Influence of boltfatigue resistance on the surrounding rock stability of deep chamber disturbed by dynamic loads[J]. Journal of China University of Mining & Technology,2021,50(3):449−458.
|
1. |
安小磊,江柏,董传才,郭玉朋. 矿井智能通风传感器部署优化与应用研究. 中国设备工程. 2025(S1): 9-12 .
![]() | |
2. |
李继平. 矿井智能通风系统的设计与应用. 能源与节能. 2025(02): 100-102+106 .
![]() | |
3. |
李孜军,陈寅,王国强,徐宇,李守强,张云韦. 喀拉通克铜镍矿智能通风技术研究与应用. 矿冶. 2025(01): 19-25 .
![]() | |
4. |
秦波涛,马东. 采空区煤自燃与瓦斯复合灾害防控研究进展及挑战. 煤炭学报. 2025(01): 392-408 .
![]() | |
5. |
张浪,雷爽,李伟,刘彦青. 基于改进人工蜂群算法的矿井风量按需调控智能决策. 工矿自动化. 2025(03): 131-137 .
![]() | |
6. |
高科,戚志鹏,唐志强,石连增,袁可一,吕航宇. 矿井智能通风研究进展与前沿展望. 矿业安全与环保. 2025(02): 17-23 .
![]() | |
7. |
刘湘滢. 矿井智能通风研究进展及展望. 工矿自动化. 2025(04): 44-56 .
![]() | |
8. |
张官禹,马腾,王光明. 伊新煤业矿井通风阻力测定与分析. 山东煤炭科技. 2025(04): 56-60+70 .
![]() | |
9. |
李伟,刘彦青,张浪. 外因火灾通风网络风量风质失效模型与数值解算方法. 煤炭科学技术. 2025(05): 196-212 .
![]() | |
10. |
贾瞳,马恒,高科. 引入风量波动因子动态解算矿井热流耦合通风网络. 煤炭学报. 2025(05): 2527-2539 .
![]() | |
11. |
吴奉亮,寇露. 用于矿井通风网络解算的通风机风压性能曲线自动识别方法. 工矿自动化. 2024(04): 103-111 .
![]() | |
12. |
陈炫中,王孝东,杨懿杰,吕玉琪,刘唱,杜青文,谢博. 矿井巷道风速智能感知技术研究进展. 矿产保护与利用. 2024(04): 124-134 .
![]() | |
13. |
秦桐,郭朝伟,邵昊,孙耀辉. 流场对采空区温度分布演化规律的影响研究. 煤矿安全. 2024(09): 110-117 .
![]() | |
14. |
臧燕杰,杨彦龙. 通风智能化技术在沙吉海煤矿的研究和应用. 内蒙古煤炭经济. 2024(17): 104-107 .
![]() | |
15. |
刘丹丹,沈琪翔,王威廉,郭胜均,汪春梅,贺平. 综掘工作面通风除尘系统结构优化及参数智能调控. 工矿自动化. 2024(10): 152-159 .
![]() | |
16. |
李全,宋宇航. 矿井智能通风实时监测与自动控制系统建设. 山东煤炭科技. 2024(11): 117-121+126 .
![]() |