Citation: | CHAO Haiyan,LI Ze,ZHEN Huaibin,et al. Fracturing interference behavior and mechanism of deep coalbed methane horizontal wells in the Daning-Jixian Block[J]. Coal Science and Technology,2025,53(3):328−339. DOI: 10.12438/cst.2024-1204 |
In order to accurately understand the effects of fracturing interference on deep CBM horizontal wells, 18 groups of fracturing interference events and their effects on 18 disturbed wells and 13 interfering wells in Daning-Jixian block were systematically analyzed, the mechanism and key influencing factors of fracturing interference were revealed. The results show that: After the producing well is disturbed, the typical characteristics are the acceleration of wellhead pressure, the decrease of gas production and the sudden increase of liquid production. The gas production recovery degree of disturbed well directly reflects the light and heavy degree of fracturing interference. The lower the cumulative gas production before disturbed, the higher the gas production recovery degree of disturbed well. In the interference event in the direction of well spacing (vertical horizontal section track direction), the lower the fracturing fluid volume and sand volume in the interfering well, the higher the recovery degree of gas production in the disturbed well. Compared with the disturbed well in the interference event of the well spacing direction, the disturbed well in the interference event of the row spacing direction (the same direction as the horizontal segment trajectory) has a higher gas production recovery degree. In the interference event of the row spacing direction, the disturbed well near the target (point A) of horizontal segment of the interfering well has a higher gas production recovery than the disturbed well at the end of the horizontal segment (point B). The formation energy exhaustion degree of the disturbed well, the microstructure, ground stress and reservoir anisotropy of the interfering well work together to affect the fracture pattern of the interfering well. The main factor affecting the production of interfering well is its own fracturing parameters. Compared with the adjacent well without interference on the same well platform, the smaller the section length, the larger the amount of liquid and sand added in a single section of the interfering well, the higher the production is. Finally, theoretical analysis and exploration were conducted on the mechanism of fracturing interference. Fracturing interference mainly has two effects on the disturbed production wells: first, it breaks the dynamic balance of gas water phase permeability, significantly increases water production, and after the discharge of foreign liquids, the gas production can be restored to the pre disturbance gas production level; the second issue is that solid particles such as proppants and coal powder block the pore throats, reducing the flow capacity of the mesh and making it difficult to restore gas production to its original level.
[1] |
姚红生,陈贞龙,何希鹏,等. 深部煤层气“有效支撑” 理念及创新实践:以鄂尔多斯盆地延川南煤层气田为例[J]. 天然气工业,2022,42(6):97−106. doi: 10.3787/j.issn.1000-0976.2022.06.009
YAO Hongsheng,CHEN Zhenlong,HE Xipeng,et al. “Effective support” concept and innovative practice of deep CBM in South Yanchuan Gas Field of the Ordos Basin[J]. Natural Gas Industry,2022,42(6):97−106. doi: 10.3787/j.issn.1000-0976.2022.06.009
|
[2] |
李明宅,曹毅民,丁蓉,等. 大宁—吉县区块深层煤岩气赋存产气特征与储量估算方法指标探讨[J]. 中国石油勘探,2024,29(4):142−155. doi: 10.3969/j.issn.1672-7703.2024.04.011
LI Mingzhai,CAO Yimin,DING Rong,et al. Gas occurrence and production characteristics of deep coal measure gas and reserve estimation method and indicators in Daning-Jixian block[J]. China Petroleum Exploration,2024,29(4):142−155. doi: 10.3969/j.issn.1672-7703.2024.04.011
|
[3] |
刘建忠,朱光辉,刘彦成,等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策:以临兴—神府区块为例[J]. 石油学报,2023,44(11):1827−1839. doi: 10.7623/syxb202311006
LIU Jianzhong,ZHU Guanghui,LIU Yancheng,et al. Breakthrough,future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin:A case study of Linxing-Shenfu block[J]. Acta Petrolei Sinica,2023,44(11):1827−1839. doi: 10.7623/syxb202311006
|
[4] |
何发岐,董昭雄. 深部煤层气资源开发潜力:以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质,2022,43(2):277−285. doi: 10.11743/ogg20220203
HE Faqi,DONG Zhaoxiong. Development potential of deep coalbed methane:A case study in the Daniudi gas field,Ordos Basin[J]. Oil & Gas Geology,2022,43(2):277−285. doi: 10.11743/ogg20220203
|
[5] |
李勇,徐立富,刘宇,等. 深部煤层气水赋存机制、环境及动态演化[J]. 煤田地质与勘探,2024,52(2):40−51. doi: 10.12363/issn.1001-1986.23.10.0617
LI Yong,XU Lifu,LIU Yu,et al. Occurrence mechanism,environment and dynamic evolution of gas and water in deep coal seams[J]. Coal Geology & Exploration,2024,52(2):40−51. doi: 10.12363/issn.1001-1986.23.10.0617
|
[6] |
GUPTA Ishank, RAI Chandra, DEVEGOWDA Deepak, 等. 常规油气储层中的压窜效应综述[J]. 石油科技动态,2021(5):27−49.
|
[7] |
何乐,袁灿明,龚蔚. 页岩气井间压窜影响因素分析和防窜对策[J]. 油气藏评价与开发,2020,10(5):63−69.
HE Le,YUAN Canming,GONG Wei. Influencing factors and preventing measures of intra-well frac hit in shale gas[J]. Reservoir Evaluation and Development,2020,10(5):63−69.
|
[8] |
周小金,雍锐,范宇,等. 天然裂缝对页岩气水平井压裂的影响及工艺调整[J]. 中国石油勘探,2020,25(6):94−104. doi: 10.3969/j.issn.1672-7703.2020.06.010
ZHOU Xiaojin,YONG Rui,FAN Yu,et al. Influence of natural fractures on fracturing of horizontal shale gas wells and process adjustment[J]. China Petroleum Exploration,2020,25(6):94−104. doi: 10.3969/j.issn.1672-7703.2020.06.010
|
[9] |
周小金,杨洪志,范宇,等. 川南页岩气水平井井间干扰影响因素分析[J]. 中国石油勘探,2021,26(2):103−112. doi: 10.3969/j.issn.1672-7703.2021.02.011
ZHOU Xiaojin,YANG Hongzhi,FAN Yu,et al. Analysis of factors affecting frac hits in horizontal shale gas wells in the southern Sichuan Basin[J]. China Petroleum Exploration,2021,26(2):103−112. doi: 10.3969/j.issn.1672-7703.2021.02.011
|
[10] |
曾凌翔. 威远页岩气水平井控缝防窜技术优化与应用[J]. 油气藏评价与开发,2021,11(1):81−85.
ZENG Lingxiang. Optimization and application of fracture control and channeling prevention technology in Weiyuan shale gas horizontal well[J]. Reservoir Evaluation and Development,2021,11(1):81−85.
|
[11] |
郭建春,路千里,何佑伟. 页岩气压裂的几个关键问题与探索[J]. 天然气工业,2022,42(8):148−161. doi: 10.3787/j.issn.1000-0976.2022.08.012
GUO Jianchun,LU Qianli,HE Youwei. Key issues and explorations in shale gas fracturing[J]. Natural Gas Industry,2022,42(8):148−161. doi: 10.3787/j.issn.1000-0976.2022.08.012
|
[12] |
李跃纲,宋毅,黎俊峰,等. 北美页岩气水平井压裂井间干扰研究现状与启示[J]. 天然气工业,2023,43(5):34−46. doi: 10.3787/j.issn.1000-0976.2023.05.004
LI Yuegang,SONG Yi,LI Junfeng,et al. Research status and implications of well interference in shale gas horizontal well fracturing in North America[J]. Natural Gas Industry,2023,43(5):34−46. doi: 10.3787/j.issn.1000-0976.2023.05.004
|
[13] |
张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究[J]. 石油钻探技术,2023,51(5):149−155. doi: 10.11911/syztjs.2023090
ZHANG Lina,REN Jianhua,HU Chunfeng. Three-dimensional development characteristics and fracture network interference of atmospheric shale gas reservoir[J]. Petroleum Drilling Techniques,2023,51(5):149−155. doi: 10.11911/syztjs.2023090
|
[14] |
卢比,胡春锋,马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究[J]. 油气藏评价与开发,2023,13(3):330−339.
LU Bi,HU Chunfeng,MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field[J]. Petroleum Reservoir Evaluation and Development,2023,13(3):330−339.
|
[15] |
边利恒,任勇,李兵. 煤层气压穿机理及影响模式探究[C]//2019油气田勘探与开发国际会议论文集. 2019:812-819.
Bian Liheng,Ren Yong,Li Bing. Study on the mechanism and influence mode of frac hits on CBM[C]//International Field Exploration and Development Conference, 2019:812-819.
|
[16] |
王喆. 延川南煤层气田压窜井影响因素分析和措施[J]. 中国石油和化工标准与质量,2022,42(16):9−11. doi: 10.3969/j.issn.1673-4076.2022.16.004
WANG Zhe. Analysis and measures of influencing factors of pressure channeling well in coalbed methane field in southern Yanchuan[J]. China Petroleum and Chemical Standard and Quality,2022,42(16):9−11. doi: 10.3969/j.issn.1673-4076.2022.16.004
|
[17] |
徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130. doi: 10.12363/issn.1001-1986.22.06.0503
XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130. doi: 10.12363/issn.1001-1986.22.06.0503
|
[18] |
聂志宏,徐凤银,时小松,等. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示[J]. 煤田地质与勘探,2024,52(2):1−12. doi: 10.12363/issn.1001-1986.23.10.0645
NIE Zhihong,XU Fengyin,SHI Xiaosong,et al. Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(2):1−12. doi: 10.12363/issn.1001-1986.23.10.0645
|
[19] |
王维,韩金良,王玉斌,等. 大宁—吉县区块深层煤岩气水平井钻井技术[J]. 石油机械,2023,51(11):70−78.
WANG Wei,HAN Jinliang,WANG Yubin,et al. Drilling technology for deep coal rock gas horizontal wells in da’ning-Jixian block[J]. China Petroleum Machinery,2023,51(11):70−78.
|
[20] |
林英松,韩帅,周雪,等. 体积压裂技术在煤层气开采中的适应性研究[J]. 西部探矿工程,2015,27(4):59−61,66. doi: 10.3969/j.issn.1004-5716.2015.04.019
|
[21] |
闫霞,徐凤银,张雷,等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报,2022,47(2):893−905.
YAN Xia,XU Fengyin,ZHANG Lei,et al. Reservoir-controlling mechanism and production-controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society,2022,47(2):893−905.
|
[22] |
史璨,林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报,2021,6(1):92−113. doi: 10.3969/j.issn.2096-1693.2021.01.008
SHI Can,LIN Botao. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin,2021,6(1):92−113. doi: 10.3969/j.issn.2096-1693.2021.01.008
|
[23] |
高向东,孙昊,王延斌,等. 临兴地区深部煤储层地应力场及其对压裂缝形态的控制[J]. 煤炭科学技术,2022,50(8):140−150.
GAO Xiangdong,SUN Hao,WANG Yanbin,et al. In-situ stress field of deep coal reservoir in Linxing Area and its control on fracturing crack[J]. Coal Science and Technology,2022,50(8):140−150.
|
[24] |
李勇,韩文龙,王延斌,等. 基于煤层气高效开发的煤粉凝聚–沉降机制研究进展[J]. 煤田地质与勘探,2021,49(2):1−12. doi: 10.3969/j.issn.1001-1986.2021.02.001
LI Yong,HAN Wenlong,WANG Yanbin,et al. Research progress on coagulation-sedimentation mechanism of pulverized coal based on efficient development of coalbed methane[J]. Coal Geology & Exploration,2021,49(2):1−12. doi: 10.3969/j.issn.1001-1986.2021.02.001
|
[25] |
陈振宏,王一兵,孙平. 煤粉产出对高煤阶煤层气井产能的影响及其控制[J]. 煤炭学报,2009,34(2):229−232. doi: 10.3321/j.issn:0253-9993.2009.02.018
CHEN Zhenhong,WANG Yibing,SUN Ping. Destructive influences and effectively treatments of coal powder to high rank coalbed methane production[J]. Journal of China Coal Society,2009,34(2):229−232. doi: 10.3321/j.issn:0253-9993.2009.02.018
|
[26] |
曹代勇,袁远,魏迎春,等. 煤粉的成因机制-产出位置综合分类研究[J]. 中国煤炭地质,2012,24(1):10−12. doi: 10.3969/j.issn.1674-1803.2012.01.03
CAO Daiyong,YUAN Yuan,WEI Yingchun,et al. Comprehensive classification study of coal fines genetic mechanism and origin site[J]. Coal Geology of China,2012,24(1):10−12. doi: 10.3969/j.issn.1674-1803.2012.01.03
|
[27] |
李鸿雨,宋晓夏,刘威,等. 屯兰区块煤层气井压裂特征多尺度分析[J]. 煤炭科学技术,2024,52(3):148−158.
LI Hongyu,SONG Xiaoxia,LIU Wei,et al. Multi-scale analysis of fracturing characteristics of coalbed methane wells in Tunlan Block[J]. Coal Science and Technology,2024,52(3):148−158.
|