Advance Search
RONG Hai,WEI Shilong,ZHANG Hongwei,et al. Influencing factors and distribution characteristics of rock burst under complex geological dynamic environment[J]. Coal Science and Technology,2025,53(3):423−434. DOI: 10.12438/cst.2024-1129
Citation: RONG Hai,WEI Shilong,ZHANG Hongwei,et al. Influencing factors and distribution characteristics of rock burst under complex geological dynamic environment[J]. Coal Science and Technology,2025,53(3):423−434. DOI: 10.12438/cst.2024-1129

Influencing factors and distribution characteristics of rock burst under complex geological dynamic environment

More Information
  • Received Date: August 01, 2024
  • Available Online: March 12, 2025
  • Rock burst results from the interaction of multiple factors. Its occurrence is not only related to mining engineering effects but also closely linked to the geo-dynamic environment of the mine. In complex geodynamic conditions, rock burst occurs more frequently. To study the influencing factors of rock burst in such environments, methods such as theoretical analysis, field monitoring, and geological exploration are employed, with 12240 working face of Gengcun Coal Mine as the research subject. The study analyzes the geodynamic environment characteristics of Gengcun Coal Mine and assesses the risk of rock burst. The critical depth for rock burst at 12240 working face is calculated, and this depth is verified using rock burst and large energy microseismic events, revealing the relationship between the occurrence depth of rock burst and its source. The “three-condition criterion for rock burst” is used to analyze the frequency, energy, and spatial distribution of microseismic events. By analyzing changes in the frequency and energy of microseismic events before and after roof pre-splitting blasting at 12240 working face, and examining the results from borehole inspections after pre-splitting blasting, the effectiveness of the far-field hazard mitigation measures for 12240 working face is verified. The research results indicate that Gengcun Coal Mine has a medium level of geo-dynamic disaster environment and is a serious rock burst mine. The critical depth for rock burst occurrence at Gengcun Coal Mine is an elevation of −545.79 meters. The burial depth of 12240 working face is close to this critical depth, indicating a risk of rock burst. The F16 fault, as a major geological structural factor at Gengcun Coal Mine, is an important component of the geo-dynamic environment and provides an energy basis for the formation and occurrence of high-energy rock burst. Mining effects are a sufficient condition for rock burst but have little impact on 12240 working face during the initial mining period. Hazard mitigation measures are control conditions that effectively reduce the risk of rock burst at 12240 working face. The research results provide a basis and reference for preventing and controlling dynamic disasters such as rock burst in complex geodynamic environments.

  • [1]
    张宏伟,孟庆男,韩军,等. 地质动力区划在冲击地压矿井中的应用[J]. 辽宁工程技术大学学报(自然科学版),2016,35(5):449−455. doi: 10.11956/j.issn.1008-0562.2016.05.001

    ZHANG Hongwei,MENG Qingnan,HAN Jun,et al. Application of the geological dynamic division in rock burst coal mine[J]. Journal of Liaoning Technical University (Natural Science),2016,35(5):449−455. doi: 10.11956/j.issn.1008-0562.2016.05.001
    [2]
    窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152−171.

    DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152−171.
    [3]
    潘俊锋,夏永学,王书文,等. 我国深部冲击地压防控工程技术难题及发展方向[J]. 煤炭学报,2024,49(3):1291−1302.

    PAN Junfeng,XIA Yongxue,WANG Shuwen,et al. Technical difficulties and emerging development directions of deep rock burst prevention in China[J]. Journal of China Coal Society,2024,49(3):1291−1302.
    [4]
    曹安业,王常彬,杨旭,等. 微震定位精度影响下采场裂隙表征与冲击地压预警[J]. 煤炭科学技术,2024,52(2):1−9. doi: 10.12438/cst.2023-1968

    CAO Anye,WANG Changbin,YANG Xu,et al. Fractures characterization in mining field considering seismic location accuracy and its application on pre-warning coal burst hazards[J]. Coal Science and Technology,2024,52(2):1−9. doi: 10.12438/cst.2023-1968
    [5]
    谭云亮,张修峰,肖自义,等. 冲击地压主控因素及孕灾机制[J]. 煤炭学报,2024,49(1):367−379.

    TAN Yunliang,ZHANG Xiufeng,XIAO Ziyi,et al. Main control factors of rock burst and its disaster evolution mechanism[J]. Journal of China Coal Society,2024,49(1):367−379.
    [6]
    张宏伟,荣海,陈建强,等. 基于地质动力区划的近直立特厚煤层冲击地压危险性评价[J]. 煤炭学报,2015,40(12):2755−2762.

    ZHANG Hongwei,RONG Hai,CHEN Jianqiang,et al. Risk assessment of rockburst based on geo-dynamic division method in suberect and extremely thick coal seam[J]. Journal of China Coal Society,2015,40(12):2755−2762.
    [7]
    崔峰,宗程,来兴平,等. 急倾斜巨厚煤层掘进巷道冲击危险时序及等级智能预测[J/OL]. 煤炭学报,1−17[2024−06−23]. https://doi.org/10.13225/j.cnki.jccs.2023.1762.

    CUI Feng,ZONG Cheng,LAI Xingping,et al. Intelligent prediction of time series and grade of rock burst danger in roadway driving in steeply inclined thick coal seam[J/OL]. Coal Journal:1−17[2024−06−23]. https://doi.org/10.13225/j.cnki.jccs.2023.1762.
    [8]
    郭伟耀,张悦颖,谷雪斌,等. 大范围采动影响下特大断层构造区微震活动规律及调控方法[J]. 煤炭科学技术,2024,52(11):260−272. doi: 10.12438/cst.2023-1477

    GUO Weiyao,ZHANG Yueying,GU Xuebin,et al. Microseismic activity law and control method in large fault structure area under the influence of large-scale mining[J]. Coal Science and Technology,2024,52(11):260−272. doi: 10.12438/cst.2023-1477
    [9]
    孙文超,王兆会,李强,等. 深部坚硬顶板工作面冲击地压多元协同防控技术[J]. 岩石力学与工程学报,2024,43(07):1736−1750.

    SUN Wenchao,WANG Zhaohui,LI Qiang,et al. Multiple collaborative prevention and control technology of rock burst in deep hard roof working face[J]. Rock mechanics and engineering,2024,43(07):1736−1750.
    [10]
    王超,张广超,赵西坡,等. 基于顶板结构特征的冲击危险性评价方法及应用[J]. 采矿与岩层控制工程学报,2024,6(2):125−135.

    WANG Chao,ZHANG Guangchao,ZHAO Xipo,et al. Evaluation method and application of rock burst hazard based on roof structure characteristics[J]. Journal of Mining and Strata Control Engineering,2024,6(2):125−135.
    [11]
    钟涛平,李振雷,杨伟,等. 厚硬顶板刀把形采空区下综放工作面冲击地压机制研究[J]. 煤炭科学技术,2024,52(06):29−39.

    ZHONG Taoping,LI Zhenlei,YANG Wei,et al. Mechanism of rock burst induced within the fully mechanized top coal caving face with overlying knife-shape-like gob and hard thick roof[J]. Coal science and technology,2024,52(06):29−39.
    [12]
    SMITH R B,WINKLER P L,ANDERSON J G,et al. Source mechanisms of microearthquakes associated with underground mines in eastern Utah[J]. Bulletin of the Seismological Society of America,1974,64(4):1295−1317. doi: 10.1785/BSSA0640041295
    [13]
    KHAN M,HE X Q,FARID A,et al. A novel geophysical method for fractures mapping and risk zones identification in a coalmine,Northeast,China[J]. Energy Reports,2021,7:3785−3804. doi: 10.1016/j.egyr.2021.06.071
    [14]
    LYU P F,GENG Y J. Unified mechanism of rock burst induced by coal mine earthquake and its activity and response characteristics[J]. Shock and Vibration,2023,2023:2145765.
    [15]
    KHAN M,HE X Q,SONG D Z,et al. Extracting and predicting rock mechanical behavior based on microseismic spatio-temporal response in an ultra-thick coal seam mine[J]. Rock Mechanics and Rock Engineering,2023,56(5):3725−3754. doi: 10.1007/s00603-023-03247-w
    [16]
    张宏伟,韩军,宋卫华,等. 地质动力区划[M]. 北京:煤炭工业出版社,2009.
    [17]
    曹代勇,占文锋,李焕同,等. 中国煤矿动力地质灾害的构造背景与风险区带划分[J]. 煤炭学报,2020,45(7):2376−2388.

    CAO Daiyong,ZHAN Wenfeng,LI Huantong,et al. Tectonic setting and risk zoning of dynamic geological disasters in coal mines in China[J]. Journal of China Coal Society,2020,45(7):2376−2388.
    [18]
    韩军,张宏伟,兰天伟,等. 京西煤田冲击地压的地质动力环境[J]. 煤炭学报,2014,39(6):1056−1062.

    HAN Jun,ZHANG Hongwei,LAN Tianwei,et al. Geodynamic environment of rockburst in western Beijing coalfield[J]. Journal of China Coal Society,2014,39(6):1056−1062.
    [19]
    张建国,兰天伟,王满,等. 平顶山矿区深部矿井动力灾害预测方法与应用[J]. 煤炭学报,2019,44(6):1698−1706.

    ZHANG Jianguo,LAN Tianwei,WANG Man,et al. Prediction method of deep mining dynamic disasters and its application in Pingdingshan mining area[J]. Journal of China Coal Society,2019,44(6):1698−1706.
    [20]
    荣海,韩永亮,张宏伟,等. 红庆梁煤矿地应力场特征及巷道稳定性分析[J]. 煤田地质与勘探,2020,48(5):144−151. doi: 10.3969/j.issn.1001-1986.2020.05.018

    RONG Hai,HAN Yongliang,ZHANG Hongwei,et al. Characteristics of in situ stress field and stability analysis of roadway in Hongqingliang coal mine[J]. Coal Geology & Exploration,2020,48(5):144−151. doi: 10.3969/j.issn.1001-1986.2020.05.018
    [21]
    荣海,张宏伟,朱志洁,等. 河南某矿煤与瓦斯突出主因分析与措施优化[J]. 辽宁工程技术大学学报(自然科学版),2019,38(6):491−500. doi: 10.11956/j.issn.1008-0562.2019.06.001

    RONG Hai,ZHANG Hongwei,ZHU Zhijie,et al. Analysis of main factors of coal and gas outburst and optimizing measures for risk resolution in a coal mine of Henan province[J]. Journal of Liaoning Technical University (Natural Science),2019,38(6):491−500. doi: 10.11956/j.issn.1008-0562.2019.06.001
    [22]
    潘一山,肖永惠,罗浩,等. 冲击地压矿井安全性研究[J]. 煤炭学报,2023,48(5):1846−1860.

    PAN Yishan,XIAO Yonghui,LUO Hao,et al. Study on safety of rockburst mine[J]. Journal of China Coal Society,2023,48(5):1846−1860.
    [23]
    兰天伟,苏广福,韩军,等. 地质动力区划预测煤与瓦斯突出[J]. 中国安全科学学报,2010,20(3):46−50. doi: 10.3969/j.issn.1003-3033.2010.03.009

    LAN Tianwei,SU Guangfu,HAN Jun,et al. Prediction of coal and gas outburst based on geo-dynamic division[J]. China Safety Science Journal,2010,20(3):46−50. doi: 10.3969/j.issn.1003-3033.2010.03.009
    [24]
    张宏伟. 地质动力区划方法在煤与瓦斯突出区域预测中的应用[J]. 岩石力学与工程学报,2003,22(4):621−624. doi: 10.3321/j.issn:1000-6915.2003.04.022

    ZHANG Hongwei. Application of geo-dynamic division method in prediction of coal and gas outburst region[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(4):621−624. doi: 10.3321/j.issn:1000-6915.2003.04.022
    [25]
    荣海,于世棋,王雅迪,等. 坚硬覆岩的结构失稳运动规律及其对冲击地压的影响[J]. 采矿与岩层控制工程学报,2022,4(6):16−26.

    Rong Hai,Yu Shiqi,Wang Yadi,et al. Structural instability movement law of hard overburden and its influence on rock burst[J]. Chinese Journal of Mining and Formation Control Engineering,2022,4(6):16−26.
    [26]
    张宏伟,朱峰,韩军,等. 冲击地压的地质动力条件与监测预测方法[J]. 煤炭学报,2016,41(3):545−551.

    ZHANG Hongwei,ZHU Feng,HAN Jun,et al. Geological dynamic conditions and forecast technology for rock bursts[J]. Journal of China Coal Society,2016,41(3):545−551.
    [27]
    张宏伟,李胜,韩军,等. 地质动力区划及其在冲击地压研究中的应用[J]. 煤炭科学技术,2023,51(1):191−202.

    ZHANG Hongwei,LI Sheng,HAN Jun,et al. Geo-dynamic division and its application in study of rock burst[J]. Coal Science and Technology,2023,51(1):191−202.
    [28]
    张宏伟. 矿井动力灾害的地质动力环境分析与评估[C]//第一届中俄矿山深部开采岩石动力学高层论坛论文集. 阜新:辽宁工程技术大学资源与环境工程学院,2011:142−147.

    ZHANG Hongwei. Geo-dynamic environment analysis and assessment of mine dynamic disasters[C]//Proceedings of the First Sino-Russian High-level Forum on Rock Dynamics in Deep Mining. Fuxin:School of Resources and Environmental Engineering,Liaoning University of Engineering and Technology,2011:142−147.
    [29]
    兰天伟,张志佳,袁永年,等. 矿井地质动力环境评价方法与冲击地压矿井类型划分研究[J]. 煤田地质与勘探,2023,51(2):104−113. doi: 10.12363/issn.1001-1986.22.12.0913

    LAN Tianwei,ZHANG Zhijia,YUAN Yongnian,et al. An evaluation method for geological dynamic environments of mines and the classification of mines subjected to rock bursts[J]. Coal Geology & Exploration,2023,51(2):104−113. doi: 10.12363/issn.1001-1986.22.12.0913
    [30]
    荣海,于世棋,张宏伟,等. 基于煤岩动力系统能量的冲击地压矿井临界深度判别[J]. 煤炭学报,2021,46(4):1263−1270.

    RONG Hai,YU Shiqi,ZHANG Hongwei,et al. Determination of critical depth in rockburst mine based on the energy of coal-rock dynamic system[J]. Journal of China Coal Society,2021,46(4):1263−1270.
    [31]
    荣海. 乌东煤矿冲击地压地质动力条件与煤岩动力系统研究[D]. 阜新:辽宁工程技术大学,2016.

    RONG Hai. Study on geological dynamic conditions and coal-rock dynamic system of rock burst in Wudong Coal Mine[D]. Fuxin:Liaoning Technical University,2016.
    [32]
    谷雪斌,张呈国,郭伟耀,等. 冲击地压矿井典型微震信号特征及其判识研究[J]. 煤炭学报,2024,49(S2):694−713.

    GU Xuebin,ZHANG Chengguo,GUO Weiyao,et al. Study on the characteristics and identification of typical microseismic signals in rock burst mines[J]. Journal of Coal,2024,49(S2):694−713.
    [33]
    国家质量监督检验检疫总局,中国国家标准化管理委员会. 冲击地压测定、监测与防治方法 第1部分:顶板岩层冲击倾向性分类及指数的测定方法:GB/T 25217.1—2010[S]. 北京:中国标准出版社,2011.
    [34]
    石瑞明. 断层失稳诱发煤矿冲击地压的力学机制研究[D]. 北京:中国矿业大学(北京),2024.

    SHI Ruiming. Research on the mechanical mechanism of rock burst induced by fault instability in coal mines [D]. Beijing:China University of Mining and Technology (Beijing),2024.
    [35]
    荣海,魏世龙,张宏伟,等. 井下断层活动的定量监测及其对冲击地压的影响研究[J]. 煤炭科学技术,2024,52(2):10−22. doi: 10.12438/cst.2023-1140

    RONG Hai,WEI Shilong,ZHANG Hongwei,et al. Research on quantitative monitoring of underground fault activity and its influence on rock burst[J]. Coal Science and Technology,2024,52(2):10−22. doi: 10.12438/cst.2023-1140
    [36]
    李一哲,张宁博,王寅,等. 义马矿区大型逆冲断层防冲方法研究[J]. 煤炭工程,2024,56(4):73−78.

    LI Yizhe,ZHANG Ningbo,WANG Yin,et al. Coal bump prevention method for coal seams with large thrust fault in Yima mining area[J]. Coal Engineering,2024,56(4):73−78.
    [37]
    中华人民共和国建设部. 岩土工程勘察规范:GB 50021—2001[S]. 北京:中国建筑工业出版社,2004.
    [38]
    国家应急管理部. 煤矿安全规程[M]. 北京:应急管理出版社,2022.
    [39]
    汤进宝. 开采扰动下耿村煤矿F16断层活化特征研究[D]. 阜新:辽宁工程技术大学,2022.

    TANG Jinbao. Activation characteristics of F16 fault in Gengcun coal mine under mining disturbance [D]. Fuxin:Liaoning Technical University,2022.

Catalog

    Article views (31) PDF downloads (29) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return