Advance Search

PAN Junfeng,MA Hongyuan,HE Haihong,et al. Dynamic load response law and limit of pressure relief drilling for coal seam prevention and control of rock burst[J]. Coal Science and Technology,2024,52(9):137−149

. DOI: 10.12438/cst.2024-1110
Citation:

PAN Junfeng,MA Hongyuan,HE Haihong,et al. Dynamic load response law and limit of pressure relief drilling for coal seam prevention and control of rock burst[J]. Coal Science and Technology,2024,52(9):137−149

. DOI: 10.12438/cst.2024-1110

Dynamic load response law and limit of pressure relief drilling for coal seam prevention and control of rock burst

Funds: 

National Natural Science Foundation of China (52174186, U23B2093); National High-level Talents Program (020403050009)

More Information
  • Author Bio:

    PAN Junfeng: 潘俊锋,博士,研究员,博士生导师,国务院政府特殊津贴专家。入选国家“万人计划”领军人才、“百千万人才工程”,被授予“有突出贡献中青年专家”称号。现为煤矿灾害防控全国重点实验室副主任,中国煤炭科工集团一级首席科学家,中煤科工开采研究院总工程师。主要从事冲击地压、矿井岩层控制与安全高效开采方面研究工作。主持了大量冲击地压矿井灾害预防与安全复产项目,首创煤矿冲击地压物理过程分解研究,提出了冲击地压启动理论(论文入选F5000),并建立了适用矿井全生命周期的冲击地压启动理论与分源防治成套技术体系(论文入选F5000)

  • Received Date: July 28, 2024
  • Available Online: September 05, 2024
  • The surrounding rock of the impact hazard roadway is often disturbed by external dynamic loads, which often leads to the occurrence of impact ground pressure. In order to explore the anti impact and pressure relief effects of large-diameter pre relief boreholes in coal seams under dynamic load disturbance conditions, a comprehensive method including theoretical analysis, laboratory experiments, and numerical simulations was used to study the dynamic load response law and limit of coal seam anti impact and pressure relief boreholes. The results indicate that the coal body in the pressure relief zone of large-diameter drilling forms a weak structure, increases the ability to attenuate dynamic loads, and reduces the possibility of impact. Under low dynamic load disturbance, the expansion of pores and cracks, and the cumulative acoustic emission events show an upward trend with the increase of disturbance period; Under higher dynamic load disturbances, the degree of damage and rupture of coal samples in boreholes intensifies, and acoustic emission events are mainly high-energy. As the dynamic load level and disturbance period increase, the distance between the stress concentration zone, elastic high-energy zone and the borehole shortens, the influence range increases, the rock movement trend strengthens, and the degree of elastic energy accumulation increases. Under low dynamic load level disturbances, drilling plays a role in energy dissipation, pressure relief, and anti-collision, which can maintain the stability of the surrounding rock. However, under high-energy dynamic load disturbances, the anti-collision of large-diameter drilling fails, and the drilling wall is prone to dynamic instability and damage, causing instability of the surrounding rock. Overall, large-diameter pressure relief boreholes have weakened structures that can dissipate energy, reduce impact, and lower the degree of dynamic load disturbance. However, under high-energy and high-frequency dynamic load disturbances, the movement trend of the surrounding rock of the pressure relief borehole increases, the degree of fracture response is severe, and the anti impact effectiveness is limited.

  • [1]
    姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.

    JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.
    [2]
    潘俊锋,毛德兵,蓝航,等. 我国煤矿冲击地压防治技术研究现状及展望[J]. 煤炭科学技术,2013,41(6):21−25,41.

    PAN Junfeng,MAO Debing,LAN Hang,et al. Study Status and Prospects of Mine Pressure Bumping Control Technology in China [J]. Coal Science and Technology,2013,41(6):21−25,41.
    [3]
    潘俊锋,高家明,闫耀东,等. 煤矿冲击地压发生风险判别公式及应用[J]. 煤炭学报,2023,48(5):1957−1968.

    PAN Junfeng,GAO Jiaming,YAN Yaodong,et al. Risk identification formula for coal burst occurrence and its application[J]. Journal of China Coal Society,2023,48(5):1957−1968
    [4]
    贾传洋,蒋宇静,张学朋,等. 大直径钻孔卸压机理室内及数值试验研究[J]. 岩土工程学报,2017,39(6):1115−1122. doi: 10.11779/CJGE201706018

    JIA Chuanyang,JIANG Yujing,ZHANG Xuepeng,et al. Laboratory and numerical experiments on pressure relief mechanism oflarge-diameter boreholes[J]. Chinese Journal of Geotechnical Engineering,2017,39(6):1115−1122. doi: 10.11779/CJGE201706018
    [5]
    贾传洋,韩宇超,王海龙,等. 钻孔卸压参数研究及应用[J]. 煤矿开采,2018,23(1):65−68,103.

    JIA Chuanyang,HAN Yuchao,WANG Hailong,et al. Studying and application of drilling hole loading relief parameters[J]. Coal Mining,2018,23(1):65−68,103.
    [6]
    GAO Xu,ZUO Minghui,SHU Yanmin . The study on large-diameter drilling prevention method of rock burst in the Xinxing Coal[J]. Geofluids,2021,2021:1−20.
    [7]
    王猛,王襄禹,肖同强. 深部巷道钻孔卸压机理及关键参数确定方法与应用[J]. 煤炭学报,2017,2(5):1138−1145.

    WANG Meng,WANG Xiangyu,XIAO Tongqiang. Borehole destressing mechanism and determination method of its key parameters in deep roadway[J]. Journal of China Coal Society,2017,2(5):1138−1145.
    [8]
    刘红岗,贺永年,徐金海,等. 深井煤巷钻孔卸压技术的数值模拟与工业试验[J]. 煤炭学报,2007,32(1):33−37.

    LIU Honggang,,HE Yongnian,XU Jinhai,et al. Numerical simulation and industrial test of boreholes destressing technology in deep coal tunnel [J]. Journal of China Coal Society,2007,32(1):33−37.
    [9]
    王书文,毛德兵,任勇. 钻孔卸压技术参数优化研究[J]. 煤矿开采,2010,15(5):14−17. doi: 10.3969/j.issn.1006-6225.2010.05.005

    WANG Shuwen,MAO Debing,REN Yong. Parameter optimization of drilling holes for pressure relief[J]. Coal Mining,2010,15(5):14−17. doi: 10.3969/j.issn.1006-6225.2010.05.005
    [10]
    LIN Baiquan,ZHANG Jianguo,SHEN Chunming,et al. Technology and application of pressure relief and permeability increase by jointly drilling and slotting coal[J]. International Journal of Mining Science and Technology,2012,22(4):535−541.
    [11]
    吴鑫,张东升,王旭锋,等. 深部高应力巷道钻孔卸压的3DEC模拟分析[J]. 煤矿安全,2008,39(10):51−53.

    WU Xin,ZHANG Dongsheng,WANG Xufeng,et al. 3DEC simulation analysis of drilling pressure relief in deep high stress tunnels[J]. Safety in Coal Mines,2008,39(10):51−53.
    [12]
    李云鹏,张宏伟,朱志洁,等. 冲击危险煤层卸压钻孔安全参数研究[J]. 中国安全科学学报,2018,28(11):122−128.

    LI Yunpeng,ZHANG Hongwei,ZHU Zhijie,et al. Study on safety parameters of pressure relief borehole in rockburst coal seam[J]. China Safety Science Journal,2018,28(11):122−128.
    [13]
    马斌文,邓志刚,赵善坤,等. 钻孔卸压防治冲击地压机理及影响因素分析[J]. 煤炭科学技术,2020,48(5):35−40.

    MA Binwen,DENG Zhigang,ZHAO Shankun,et al. Analysis on mechanism and influencing factors of drilling pressure relief to prevent rock burst[J]. Coal Science and Technology,2020,48(5):35−40.
    [14]
    ZHANG Shichuan,LI Yangyang,SHEN Baotang,et al. Effective evaluation of pressure relief drilling for reducing rock bursts and its application in underground coal mines[J]. International Journal of Rock Mechanics and Mining Sciences,2019,114:7−16. doi: 10.1016/j.ijrmms.2018.12.010
    [15]
    李金奎,刘东生,李学彬,等. 小煤柱应力集中区钻孔卸压效果的数值模拟[J]. 西安科技大学学报,2009,29(5):527−530,569. doi: 10.3969/j.issn.1672-9315.2009.05.005

    LI Jinkui,LIU Dongsheng,LI Xuebin,et al. Numerical simulation of small pillar stress concentration areas borehole pressure relief effect[J]. Journal of Xi’an University of Science and Technology,2009,29(5):527−530,569. doi: 10.3969/j.issn.1672-9315.2009.05.005
    [16]
    宋卫华,兰永伟. 卸压(排放)钻孔破坏半径的数值模拟分析[J]. 辽宁工程技术大学学报,2006,25(S2):13−15.

    SONG Weihua,LAN Yongwei. Numerical simulation analysis of destroyed radius by pressure-released (drainage) borehole[J]. Journal of Liaoning Technical University,2006,25(S2):13−15.
    [17]
    GU Shitan ,XIAO Zhimin ,HUANG Ruifeng,et al. Rock burst danger warning and large diameter drilling pressure–relief technology in fully mechanized caving island coal face[C]. Taishan academic forum–project on mine disaster prevention and control,2014,10:75−85.
    [18]
    齐燕军,靖洪文,孟波,等. 卸压孔尺寸效应的模型试验研究[J]. 采矿与安全工程学报,2018,35(3):538−544.

    QI Yanjun,JING Hongwen,MENG Bo,et al. Experimental modelling on size effect of pressure relief hole[J]. Journal of Mining and Safety Engineering,2018,35(3):538−544.
    [19]
    兰永伟,刘鹏程,李伟,等. 卸压钻孔破坏半径影响因素及破坏半径回归分析[J]. 煤矿安全,2013,44(4):24−26,30.

    LAN Yongwei,LIU Pengcheng,LI Wei,et al. The influencing factors of drillhole pressure relief and the regression analysis of destroy radius[J]. Safety in Coal Mines,2013,44(4):24−26,30.
    [20]
    潘俊锋,闫耀东,马宏源,等. 一次成孔300 mm煤层大直径钻孔防冲效能试验[J]. 采矿与岩层控制工程学报,2022,4(5):053013.

    PAN Junfeng,YAN Yaodong,MA Hongyuan,et al. Using 300 mm diameter boreholes for coal burst prevention a case study[J]. Journal of Mining and Strata Control Engineering,2022,4(5):053013.
    [21]
    ZHANG Wenlong,LI Chen,REN Jianju ,et al. Measurement and application of vibration signals during pressure relief hole construction using microseismic system[J]. Measurement,2020,158:107696.
    [22]
    盖德成,李东,姜福兴,等. 基于不同强度煤体的合理卸压钻孔间距研究[J]. 采矿与安全工程学报,2020,37(3):578−585,593.

    GAI Decheng,LI Dong,JIANG Fuxing,et al. Reasonable pressure-relief borehole spacing in coal of different strength[J]. Journal of Mining and Safety Engineering,2020,37(3):578−585,593.
    [23]
    王爱文,高乾书,潘一山,等. 预制钻孔煤样冲击倾向性及能量耗散规律[J]. 煤炭学报,2021,46(3):959−972.

    WANG Aiwen,GAO Qianshu,PAN Yishan,et al. Bursting liability and energy dissipation laws of prefabricated borehole coal samples[J]. Journal of China Coal Society,2021,46(3):959−972.
    [24]
    王爱文,高乾书,潘一山. 煤层钻孔降倾−控变−耗能防冲机制试验研究[J]. 岩土力学,2021,42(5):1230−1244.

    WANG Aiwen,GAO Qianshu,PAN Yishan. Experimental study of rock burst prevention mechanism of bursting liability reduction-deformation control-energy dissipation based on drillhole in coal seam[J]. Rock and Soil Mechanics,2021,42(5):1230−1244.
    [25]
    朱斯陶,姜福兴,史先锋,等. 防冲钻孔参数确定的能量耗散指数法[J]. 岩土力学,2015,36(8):2270−2276.

    ZHU Sitao,JIANG Fuxing,SHI Xianfeng,et al. Energy dissipation index method for determining rockburstprevention drilling parameters[J]. Rock and Soil Mechanics,2015,36(8):2270−2276.
    [26]
    刘华博,赵毅鑫,姜耀东,等. 综放工作面煤层大直径钻孔卸压防灾技术[J]. 煤矿安全,2018,49(5):79−82.

    LIU Huabo,ZHAO Yixin,JIANG Yaodong,et al. Pressure relief and disaster prevention technology by large diameter borehole in fully mechanized caving face[J]. Safety in Coal Mines,2018,49(5):79−82.
    [27]
    史庆稳,崔宏科,吕大钊,等. 冲击地压煤层巷帮卸压钻孔施工参数研究[J]. 煤矿开采,2017,22(6):74−77.

    SHI Qingwen,CUI Hongke,LV Dazhao,et al. Study on pressure relief drilling holes layout parameters of roadside in rockburst coal seam[J]. Coal Mining,2017,22(6):74−77.
    [28]
    马宏源. 大直径卸压钻孔时变特性与动静载荷响应规律研究[D]. 北京:煤炭科学研究总院,2023.

    MA Hongyuan. Study on time-varying characteristics and dynamic and static load response law of large-diameter pressure relief drilling [D]. Beijing:Chinese Institute of Coal Science ,2023.
  • Related Articles

    [1]PAN Junfeng, LIU Shaohong, MA Wentao, XIA Yongxue, WANG Shuwen, FENG Meihua. Occurrence law and classification prevention of rock burst in coal mines of Shaanxi Province[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(1): 95-105. DOI: 10.12438/cst.2023-1492
    [2]PAN Junfeng, LU Chuang, MA Xiaohui, XIA Yongxue, XIE Fei, XU Gang, DOU Guidong, LYU Dazhao, SUN Xiaodong, MA Wentao. System and application of regional fracking of coal seam roof on and under the ground to prevent rockburst[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(2): 106-115. DOI: 10.13199/j.cnki.cst.2022-0903
    [3]ZHANG Junwen, DONG Xukai, CHAI Haitao, YANG Lei, ZHAO Shankun, WANG Qian, LYU Yulei, JIA Lele, BAI Junjie, ZHENG Bo, LI Xiaoming, JING Yanfeng. Structure evolution and rockbursts prevention in multi-face mining in geological anomaly area[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(2): 95-105. DOI: 10.13199/j.cnki.cst.2022-1468
    [4]GAO Jiaming, PAN Junfeng, DU Taotao, YAN Yaodong. Characteristics and prevention and control status quo of rock burst in Northeastern Mining Area of China[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(3): 49-56. DOI: 10.13199/j.cnki.cst.2021.03.005
    [5]MA Binwen, DENG Zhigang, ZHAO Shankun, LI Shaogang. Analysis on mechanism and influencing factors of drilling pressure relief to prevent rock burst[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(5).
    [6]ZHANG Chuanjiu, DU Taotao, LI Hongping, JIA Bingbing. Research on rock burst prevention of high static coal seam in hard roof working face[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (3).
    [7]KONG Linghai, DENG Zhigang, LIANG Kaishan, CHENG Gang, LI Bo. Study on mine rock burst prevention and control with roof and sidewalls control in mine deep seam gateway[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (10).
    [8]WEI Hongchao. Technology and equipment of large diameter borehole construction applied to prevent and control pressure bump in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (10).
    [9]Wei Zhenquan. Risk analysis and prevention technology of mine pressure bump occurred in coal mining face forward to mining goaf[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (11).
    [10]LAN Hang DU Tao-tao, . Rock burst prevention and control technology of mine driving gateway passing through mining terminal line in contiguous seams[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (1).
  • Cited by

    Periodical cited type(2)

    1. 张宏杰,马凯. 基于螺旋钻进工艺的顺层孔施工参数优化研究. 煤矿机械. 2025(01): 105-111 .
    2. 姬战锁,齐黎明. 封孔器锥面端头与钻孔残留煤渣的力学作用分析及应用. 煤矿安全. 2024(08): 198-205 .

    Other cited types(0)

Catalog

    Article views (161) PDF downloads (80) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return