Citation: | LI Ran,YE Jian,LU Haicheng,et al. Research on key technology and engineering application of emulsion pump in super-high mining face[J]. Coal Science and Technology,2024,52(11):153−162. DOI: 10.12438/cst.2024-1019 |
With the continuous development and progress of intelligent unmanned mining technology in coal mines, more and more intelligent unmanned fully-mechanized mining faces with large mining heights and super mining heights have been built and put into production, and high-efficiency intelligent fully-mechanized mining technology and equipment have achieved a leap forward development, which also puts forward new challenges and requirements for the liquid supply capacity of intelligent liquid supply system in coal mines.In order to meet the liquid supply demand of intelligent unmanned fully mechanized mining face with super high mining height, the problems of emulsion pump under the complicated working condition of super large flow were analyzed and summarized, and the key technologies to improve the reliability of super large flow emulsion pump station were studied.A new type of shaft system based on herringbone gear pair input shaft and crankshaft is designed, which solves the problem of low stability of gear pair transmission system in megawatt pump station system. The reliability analysis of the reciprocating cross-liner friction pair and the key bearings of the megawatt transmission system is carried out to improve the reliability of the transmission pair. Through dynamic characteristic analysis of valve, visualization technology and high reliability sealing technology research, the performance of high-efficiency cavitation valve is improved. A cavitation suppression method and structure based on permanent magnet intrinsic safety electromagnet and air pocket enrolling are studied to improve the response characteristics of the pilot stage and the anti-cavitation characteristics of the unloading valve port, thus improving the reliability of the high-pressure large-flow unloading valve. The safety and availability of high pressure and large flow pumping stations have been improved through the innovative development of the intelligent early warning and diagnosis system of cloud edge end cooperation. A new type of shaft system based on herringbone gear pair input shaft and crankshaft is designed, which solves the problem of low stability of gear pair transmission system in megawatt pump station system. The reliability analysis of the reciprocating cross-liner friction pair and the key bearings of the megawatt transmission system is carried out to improve the reliability of the transmission pair. Through dynamic characteristic analysis of valve, visualization technology and high reliability sealing technology research, the performance of high-efficiency cavitation valve is improved. A cavitation suppression method and structure based on permanent magnet intrinsic safety electromagnet and air pocket enrolling are studied to improve the response characteristics of the pilot stage and the anti-cavitation characteristics of the unloading valve port, thus improving the reliability of the high-pressure large-flow unloading valve. The safety and availability of high pressure and large flow pumping stations have been improved through the innovative development of the intelligent early warning and diagnosis system of cloud edge end cooperation.Finally, the high-power-to-weight ratio
[1] |
王国法,李希勇,张传昌,等. 8 m大采高综采工作面成套装备研发及应用[J]. 煤炭科学技术,2017,45(11):1−8.
WANG Guofa,LI Xiyong,ZHANG Chuanchang,et al. Research and development and application of set equipment of 8 m large mining height fully-mechanized face[J]. Coal Science and Technology,2017,45(11):1−8.
|
[2] |
韩会军,王国法,许永祥,等. 6~10 m 厚煤层超大采高液压支架及其工作面系统自适应智能耦合控制[J]. 煤炭科学技术,2024,52(5):276−288.
HAN Huijun,WANG Guofa,XU Yongxiang,et al. Adaptive intelligent coupling control of hydraulic support and working face system for 6−10 m super high mining in thick coal seams[J]. Coal Science and Technology,2024,52(5):276−288.
|
[3] |
李然,王伟,苏哲. 高压大流量乳化液泵曲轴疲劳强度分析[J]. 煤矿开采,2014(1):45−48.
LI Ran,WANG Wei,SU Zhe. Fatigue strength analysis of bent axle of large-flow and high-pressure emulsion pump[J]. Coal Mining Technology,2014(1):45−48.
|
[4] |
李然,王伟,苏哲. 高压大流量乳化液泵滑动轴承热流体动力润滑仿真分析[J]. 煤炭学报,2014,39(S2):576−582.
LI Ran,WANG Wei,SU Zhe. Numerical study on thermohydrodynamic performance of journal bearing in high-pressure and large-flow-rate emulsion pump[J]. Journal of China Coal Society,2014,39(S2):576−582.
|
[5] |
LI Ran. Optimization design on root stress of helical gear in high-power emulsion pump[J]. WIT Transactions on Information and Communication Technologies,2014,48:1281−1287.
|
[6] |
李然. 大采高工作面高压大流量乳化液泵的研制及应用[J]. 煤炭科学技术,2017,45(12):145−149.
LI Ran. Research and development as well as application of high pressure and high flow emulsion pump to large mining height face[J]. Coal Science and Technology,2017,45(12):145−149.
|
[7] |
LI R,WEI W S,LIU H,et al. Simulation study on liquid-end of high-pressure and large-flow-rate reciprocating pump[C]//2019 IEEE 8th International Conference on Fluid Power and Mechatronics (FPM). Wuhan,China. IEEE,2019:1008−1014.
|
[8] |
LI R,WEI W S,LI S B,et al. The influence of ceramic coating on fatigue crack growth behaviour of X17CrNi15-2 stainless steel[J]. Engineering,2020,12(2):140−149. doi: 10.4236/eng.2020.122012
|
[9] |
LI R. Fracture toughness testing and prediction for ceramic materials using in large-flow-rate emulsion pumps[J]. International Journal of Mechanical Engineering and Applications,2019,7(2):46. doi: 10.11648/j.ijmea.20190702.12
|
[10] |
王初亮,李然,韦文术,等. 一种乳化液泵及其动力端:CN213870246U[P]. 2021-08-03.
|
[11] |
王初亮,李然,韦文术,等. 一种乳化液柱塞泵及其泵头总成:CN212656967U[P]. 2021-03-05.
|
[12] |
LI R,WEI W S,LIU H,et al. Comparative evaluation of wear behavior of tribo-pairs in reciprocating pumps with multiple materials under different conditions[J]. Journal of Theoretical and Applied Mechanics,2023:77−87.
|
[13] |
俞继瑶,杨喜军,牛丽丽,等. 基于轴承润滑脂元素含量分析的轴承运行状态可行性研究[J]. 山西化工,2023,43(11):105−106.
YU Jiyao,YANG Xijun,NIU Lili,et al. Feasibility study on analyzing the operating status of bearings based on the element content of bearing lubricating grease[J]. Shanxi Chemical Industry,2023,43(11):105−106.
|
[14] |
LI R,WANG D L,WEI W S,et al. Analysis of the movement characteristics of the pump valve of the mine emulsion pump based on the Internet of Things and cellular automata[J]. Mobile Information Systems,2021,2021(1):9032769.
|
[15] |
马宝玉,廉自生,茆虎成. 基于振动烈度的乳化液泵配流阀弹簧故障特征提取研究[J]. 机床与液压,2024,52(7):201−207. doi: 10.3969/j.issn.1001-3881.2024.07.030
MA Baoyu,LIAN Zisheng,MAO Hucheng. Fault feature extraction of valve spring of emulsion pump based on vibration intensity[J]. Machine Tool & Hydraulics,2024,52(7):201−207. doi: 10.3969/j.issn.1001-3881.2024.07.030
|
[16] |
ADOLPH U. Berechnung des arbeitsspiels selbsttätiger ventile schnelllaufender koThenpumpen[J]. Maschinenbau Tech,1968,17:189−193.
|
[17] |
孟英峰,梁红,张仲良. 往复泵泵阀运动规律的建模与仿真[J]. 石油机械,1995,23(5):16−20.
MENG Yingfeng,LIANG Hong,ZHANG Zhongliang. Modeling and simulation of the movement law of reciprocating pump valve[J]. China Petroleum Machinery,1995,23(5):16−20.
|
[18] |
LI R,WEI W S,LIU H,et al. Experimental and numerical study on the dynamic and flow characteristics of a reciprocating pump valve[J]. Processes,2022,10(7):1328. doi: 10.3390/pr10071328
|
[19] |
卢海承,韦文术,王伟. 高压大流量电磁卸荷阀气蚀防治技术研究[J]. 煤矿机械,2022,43(7):30−32.
LU Haicheng,WEI Wenshu,WANG Wei. Research on cavitation prevention technology of high pressure and large flow electromagnetic unloading valve[J]. Coal Mine Machinery,2022,43(7):30−32.
|
[20] |
YANG Y,ZHANG B,WU H,et al. A deep learning approach for low-cycle fatigue life prediction under thermal–mechanical loading based on a novel neural network model[J]. Engineering Fracture Mechanics,2024,306:110239. doi: 10.1016/j.engfracmech.2024.110239
|
[21] |
王骁鹏,华鸿鹏,陆长清,等. 基于小样本深度学习的齿轮表面损伤识别研究[J]. 机械传动,2024,48(4):103−108.
WANG Xiaopeng,HUA Hongpeng,LU Changqing,et al. Research on gear surface damage recognition based on small sample deep learning[J]. Journal of Mechanical Transmission,2024,48(4):103−108.
|
[22] |
焦晓璇,章余,景博,等. 基于双重注意力机制及S-BiGAN的机电设备故障诊断[J]. 航空工程进展,2023,14(5):162−168.
JIAO Xiaoxuan,ZHANG Yu,JING Bo,et al. Mechanical and electrical equipment fault diagnosis based on dual attention mechanism and S-BiGAN[J]. Advances in Aeronautical Science and Engineering,2023,14(5):162−168.
|
[23] |
谢洪路. 煤炭采矿中的支护结构健康监测与故障诊断技术的研究[J]. 家电维修,2024(7):92−94.
XIE Honglu. Research on health monitoring and fault diagnosis technology of supporting structure in coal mining[J]. Appliance Repairing,2024(7):92−94.
|
[24] |
李然,孙晓冬,刘波,等. 煤矿井下智能压裂泵系统研究[J]. 煤炭科学技术,2022,50(4):264−269.
LI Ran,SUN Xiaodong,LIU Bo,et al. Research on intelligent fracturing pump system in coal mine[J]. Coal Science and Technology,2022,50(4):264−269.
|
1. |
杨健锋,刘泽宇,柴敬,高登彦,张丁丁,郝鸿儒,王佳琪,杨磊. 区段煤柱内部变形光纤监测应用研究. 采矿与岩层控制工程学报. 2025(02): 224-237 .
![]() | |
2. |
冯智杰,王龙. 孙家沟煤矿煤层开采覆岩变形与迁移规律研究. 煤矿现代化. 2025(04): 157-160 .
![]() | |
3. |
冀汶莉,淡新,马晨阳,柴敬,吴玉意,秋风岐,刘文涛,雷武林,刘永亮. 时间卷积长短时记忆网络煤矿平硐变形多步预测. 煤炭科学技术. 2025(04): 176-190 .
![]() | |
4. |
胡龙宇,孟祥瑞,程详,赵光明,顾清恒,王艳芬. 穿层巷道围岩松动圈范围测试及演化规律研究. 中国矿业. 2025(05): 176-186 .
![]() | |
5. |
朱万成,徐晓冬,李磊,牟文强,宋清蔚,李荟. 金属矿山地质灾害风险智能监测预警技术现状与展望. 金属矿山. 2024(01): 20-44 .
![]() | |
6. |
刘天翔,朱鸿鹄,吴冰,李豪杰,胡乐乐. 埋入式应变感测光缆-冻土界面渐进破坏机制研究. 岩土力学. 2024(01): 131-140 .
![]() | |
7. |
柴敬,王佳琪,杨健锋,高登彦,高奎英,陈建华,刘泽宇,杨磊. 区段煤柱变形光纤光栅监测应用研究. 煤炭科学技术. 2024(01): 126-137 .
![]() | |
8. |
李建. 基于激光扫描的矿井掘进围岩变形监测. 现代矿业. 2024(08): 191-194 .
![]() | |
9. |
王义兵. 光纤传感技术在矿山安全监测中的应用探究. 世界有色金属. 2024(20): 38-40 .
![]() | |
10. |
陈大星,贾浩,尚帅. 倾斜采场覆岩突水危险性分布式光纤监测研究. 煤炭技术. 2024(12): 176-180 .
![]() | |
11. |
杜怀龙,刘忠平,田志诚. 近距离煤层上覆遗留煤柱应力扰动特征研究及应用. 矿业安全与环保. 2024(06): 112-121 .
![]() | |
12. |
张礼才. 基于光纤传感的掘采装备随机振动研究. 煤矿机械. 2023(03): 33-36 .
![]() | |
13. |
柴敬,韩志成,雷武林,张丁丁,马晨阳,孙凯,翁明月,张有志,丁国利,郑忠友,张寅,韩刚. 回采巷道底鼓演化过程的分布式光纤实测研究. 煤炭科学技术. 2023(01): 146-156 .
![]() | |
14. |
柴敬,刘泓瑞,张丁丁,刘永亮,韩志成,田志诚,张锐新. 覆岩载荷扰动下平硐围岩变形分析及支护优化. 工矿自动化. 2023(03): 13-22 .
![]() | |
15. |
李延河,杨战标,朱元广,王升. 基于弱光纤光栅传感技术的围岩变形监测研究. 煤炭科学技术. 2023(06): 11-19 .
![]() | |
16. |
朱卫兵,王晓振,谢建林,赵波智,宁杉,许家林. 矿山采动覆岩内部岩移原位监测技术进展及应用. 工矿自动化. 2023(09): 1-12 .
![]() | |
17. |
孙镇艳. 分布式光栅传感技术在边坡监测中的应用研究. 工程技术研究. 2023(20): 45-47 .
![]() | |
18. |
程刚,王振雪,施斌,朱鸿鹄,李刚强,田立勤. 采动覆岩变形多场光纤神经感知与安全保障体系构建研究. 煤炭科学技术. 2023(11): 104-118 .
![]() | |
19. |
彭泓,刘亚飞. 基于光纤光栅技术的巷道支护锚杆受力监测. 煤炭科学技术. 2022(06): 61-67 .
![]() | |
20. |
周禹良,杨雪,许发强. 综放工作面导水裂隙带高度分布式光纤监测技术. 中国矿业. 2022(12): 108-114 .
![]() | |
21. |
王伟,弓仲标. 近距离煤层群煤柱下开采动压巷道围岩变形规律及控制. 煤炭科学技术. 2022(S2): 143-152 .
![]() | |
22. |
叶少敏. 基于多参量光纤传感技术的京雄城际隧道形位感测系统应用研究. 隧道建设(中英文). 2021(07): 1141-1149 .
![]() | |
23. |
冀汶莉,刘艺欣,柴敬,王斌. 基于随机森林的矿压预测方法. 采矿与岩层控制工程学报. 2021(03): 71-81 .
![]() | |
24. |
孙斌杨,张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望. 工程地质学报. 2021(04): 985-1001 .
![]() | |
25. |
谢旭光. 金属矿山井下测量常见错误及预防方法研究. 中国金属通报. 2021(06): 206-207 .
![]() | |
26. |
冯学文,荣剑,代文程. 恒昇煤矿采场覆岩应力分布与导水裂隙带高度研究. 煤炭技术. 2021(10): 8-13 .
![]() | |
27. |
王飞. 基于光纤传感技术的智能矿山无人化巡检系统研究. 煤炭科学技术. 2021(S2): 263-267 .
![]() |