Citation: | YANG Wenjuan,ZHANG Ran,ZHANG Xuhui,et al. Research on collision avoidance path planning method for mining and anchoring equipment in narrow and restricted space of tunneling laneways[J]. Coal Science and Technology,2025,53(S1):483−496. DOI: 10.12438/cst.2024-0998 |
Addressing the challenges of collision detection and collision avoidance path planning during the collaborative operation of mining and anchoring equipment in the narrow and restricted spaces of underground coal mines, this paper proposes a method for collision detection and collision avoidance path planning for mining and anchoring equipment in tunneling lanes based on Deep Reinforcement Learning (DRL). LiDAR is utilized for real-time environmental reconstruction of the tunnel, and a path planning training model for mining and drilling equipment is established in a virtual environment. In the constructed three-dimensional virtual scene of the mining face, a hybrid hierarchical bounding box method is applied for virtual collision detection among mining and anchoring equipment, drilling and anchoring equipment, and the tunnel itself. Considering the motion characteristics of the mining and anchoring equipment, this paper introduces a Multi-Agent Experience Sharing mechanism on the basis of the Soft Actor-Critic (SAC) algorithm, proposing the MAES-SAC algorithm. By defining the state space and action space of the agent and designing a corresponding reward and punishment mechanism, the agent is trained. Simulation results indicate that, compared to the PPO algorithm and the SAC algorithm, the MAES-SAC algorithm has improved the average reward value by 8.21% and 7.43% respectively, increased the maximum reward value by 0.25% and 0.14% respectively, reduced the steps to reach the maximum reward value by 3.06% and 6.63% respectively, and decreased the standard deviation by 10.07% and 6.99% respectively. Finally, an experimental platform for collision avoidance path planning and collision perception system for mining and anchoring equipment is constructed. Through virtual-physical motion synchronization testing and collision avoidance trajectory planning experiments, the feasibility and accuracy of the collision avoidance path planning for mining and anchoring equipment are verified. This method provides a new approach for collision perception and collaborative collision avoidance path planning of mining equipment groups in underground coal mines, which is of significant importance for promoting the intelligent construction of mining faces in underground coal mines.
[1] |
胡兴涛,朱涛,苏继敏,等. 煤矿巷道智能化掘进感知关键技术[J]. 煤炭学报,2021,46(7):2123−2135.
HU Xingtao,ZHU Tao,SU Jimin,et al. Key technology of intelligent drivage perception in coal mine roadway[J]. Journal of China Coal Society,2021,46(7):2123−2135.
|
[2] |
张旭辉,杨文娟,薛旭升,等. 煤矿远程智能掘进面临的挑战与研究进展[J]. 煤炭学报,2022,47(1):579−597.
ZHANG Xuhui,YANG Wenjuan,XUE Xusheng,et al. Challenges and developing of the intelligent remote controlon roadheaders in coal mine[J]. Journal of China Coal Society,2022,47(1):579−597.
|
[3] |
王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12−26. doi: 10.12363/issn.1001-1986.23.02.0062
WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12−26. doi: 10.12363/issn.1001-1986.23.02.0062
|
[4] |
HEO Y S,LEE K M,LEE S U. Robust stereo matching using adaptive normalized cross-correlation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(4):807−822. doi: 10.1109/TPAMI.2010.136
|
[5] |
QU H Y,LI W H,ZHAO W. Human-vehicle collision detection algorithm based on image processing[J]. International Journal of Pattern Recognition and Artificial Intelligence,2020,34(8):2055015. doi: 10.1142/S0218001420550150
|
[6] |
李建波,潘振宽,孙志军. 基于包围盒与空间分解的碰撞检测算法[J]. 计算机科学,2005,32(6):155−157. doi: 10.3969/j.issn.1002-137X.2005.06.045
LI Jianbo,PAN Zhenkuan,SUN Zhijun. The collision detection algorithm based on combination of buonding volumes and space division[J]. Computer Science,2005,32(6):155−157. doi: 10.3969/j.issn.1002-137X.2005.06.045
|
[7] |
GAN B Q,DONG Q P. An improved optimal algorithm for collision detection of hybrid hierarchical bounding box[J]. Evolutionary Intelligence,2022,15(4):2515−2527. doi: 10.1007/s12065-020-00559-6
|
[8] |
林菲,邹玲,张聪. 基于混合层次包围盒的快速碰撞检测算法[J]. 计算机仿真,2023,40(9):454−457. doi: 10.3969/j.issn.1006-9348.2023.09.086
LIN Fei,ZOU Ling,ZHANG Cong. Fast collision detection algorithm based on hybrid hierarchical bounding box[J]. Computer Simulation,2023,40(9):454−457. doi: 10.3969/j.issn.1006-9348.2023.09.086
|
[9] |
赵伟,李文辉. 空间图像重建的快速碰撞检测算法[J]. 吉林大学学报(工学版),2009,39(6):1631−1634.
ZHAO Wei,LI Wenhui. Fast collision detection algorithm for space image reconstruction[J]. Journal of Jilin University (Engineering and Technology Edition),2009,39(6):1631−1634.
|
[10] |
张国飚,张华,刘满禄,等. 基于空间剖分的碰撞检测算法研究[J]. 计算机工程与应用,2014,50(7):46−49,55. doi: 10.3778/j.issn.1002-8331.1307-0319
ZHANG Guobiao,ZHANG Hua,LIU Manlu,et al. Research of collision detection algorithm based on spatial subdivision[J]. Computer Engineering and Applications,2014,50(7):46−49,55. doi: 10.3778/j.issn.1002-8331.1307-0319
|
[11] |
张宇,张得礼,张文奇,等. 基于混合层次包围盒的水下训练机械臂碰撞检测方法研究[J]. 载人航天,2022,28(5):627−636.
ZHANG Yu,ZHANG Deli,ZHANG Wenqi,et al. Research on collision detection method of underwater training manipulator based on hybrid hierarchical bounding box[J]. Manned Spaceflight,2022,28(5):627−636.
|
[12] |
张殿富,刘福. 基于人工势场法的路径规划方法研究及展望[J]. 计算机工程与科学,2013,35(6):88−95. doi: 10.3969/j.issn.1007-130X.2013.06.015
ZHANG Dianfu,LIU Fu. Research and development trend of path planning based on artificial potential field method[J]. Computer Engineering & Science,2013,35(6):88−95. doi: 10.3969/j.issn.1007-130X.2013.06.015
|
[13] |
朱曼曼,杜煜,张永华,等. 基于模糊逻辑的智能车局部路径规划[J]. 北京联合大学学报,2016,30(4):29−32.
ZHU Manman,DU Yu,ZHANG Yonghua,et al. Local path planning of smart car based on fuzzy logic method[J]. Journal of Beijing Union University,2016,30(4):29−32.
|
[14] |
程向红,祁艺. 基于栅格法的室内指示路径规划算法[J]. 中国惯性技术学报,2018,26(2):236−240,267.
CHENG Xianghong,QI Yi. Indoor indicator path planning algorithm based on grid method[J]. Journal of Chinese Inertial Technology,2018,26(2):236−240,267.
|
[15] |
姜龙腾,迟瑞娟,马悦琦,等. 基于栅格法的农业机器人路径规划方法研究[J]. 农机化研究,2024,46(6):19−24. doi: 10.3969/j.issn.1003-188X.2024.06.003
JIANG Longteng,CHI Ruijuan,MA Yueqi,et al. Research on path planning method of agricultural robot based on grid method[J]. Journal of Agricultural Mechanization Research,2024,46(6):19−24. doi: 10.3969/j.issn.1003-188X.2024.06.003
|
[16] |
苏子美,董红斌. 面向无人机路径规划的多目标粒子群优化算法[J]. 应用科技,2021,48(3):12−20,26.
SU Zimei,DONG Hongbin. Multi-objective particle swarm optimization algorithm for UAV path planning[J]. Applied Science and Technology,2021,48(3):12−20,26.
|
[17] |
刘璐,沈小伟,葛超,等. 基于改进蚁群算法的植保无人机路径规划[J]. 计算机仿真,2024,41(1):39−43. doi: 10.3969/j.issn.1006-9348.2024.01.009
LIU Lu,SHEN Xiaowei,GE Chao,et al. Path planning of plant protection UAV based on improved ant colony algorithm[J]. Computer Simulation,2024,41(1):39−43. doi: 10.3969/j.issn.1006-9348.2024.01.009
|
[18] |
张琰,罗甜. 基于强化学习算法的路径规划技术分析[J]. 中国高新科技,2022(23):35−37. doi: 10.3969/j.issn.2096-4137.2022.23.013
ZHANG Yan,LUO Tian. Analysis of path planning technology based on reinforcement learning algorithm[J]. China High-Tech,2022(23):35−37. doi: 10.3969/j.issn.2096-4137.2022.23.013
|
[19] |
许宏鑫,吴志周,梁韵逸. 基于强化学习的自动驾驶汽车路径规划方法研究综述[J]. 计算机应用研究,2023,40(11):3211−3217.
XU Hongxin,WU Zhizhou,LIANG Yunyi. Review of research on path planning methods for autonomous vehicles based on reinforcement learning[J]. Application Research of Computers,2023,40(11):3211−3217.
|
[20] |
赵奉奎,葛振,董锋威,等. 基于改进人工势场法的智能汽车轨迹规划算法研究[J]. 重庆交通大学学报(自然科学版),2022,41(11):153−160. doi: 10.3969/j.issn.1674-0696.2022.11.21
ZHAO Fengkui,GE Zhen,DONG Fengwei,et al. Intelligent vehicle trajectory planning algorithm based onImproved artificial potential field method[J]. Journal of Chongqing Jiaotong University (Natural Science),2022,41(11):153−160. doi: 10.3969/j.issn.1674-0696.2022.11.21
|
[21] |
王宇斌,沈振军,王昱宸,等. 基于A*算法的四面体机器人路径规划研究[J]. 机械传动,2024,48(2):42−47.
WANG Yubin,SHEN Zhenjun,WANG Yuchen,et al. Research on path planning for tetrahedral robots based on a* algorithm[J]. Journal of Mechanical Transmission,2024,48(2):42−47.
|
[22] |
唐宏伟,高方坤,邓嘉鑫,等. 基于蚁群算法的物资运送小车路径规划研究[J]. 现代制造工程,2024(2):24−30,119.
TANG Hongwei,GAO Fangkun,DENG Jiaxin,et al. Research on route planning of material transport vehicle based on ant colony algorithm[J]. Modern Manufacturing Engineering,2024(2):24−30,119.
|
[23] |
吴立辉,李元生,周秀,等. 基于强化学习的整体式AMHS防堵塞路径规划方法[J]. 工业工程与管理,2023,28(6):119−130.
WU Lihui,LI Yuansheng,ZHOU Xiu,et al. An anti-congestion path planning method based on reinforcement learning for unified AMHS[J]. Industrial Engineering and Management,2023,28(6):119−130.
|
[24] |
尹旷,王红斌,方健,等. 基于强化学习的移动机器人路径规划优化[J]. 电子测量技术,2021,44(10):91−95.
YIN Kuang,WANG Hongbin,FANG Jian,et al. Optimization of robot path planning based on reinforcement learning[J]. Electronic Measurement Technology,2021,44(10):91−95.
|
[25] |
黄昱洲,王立松,秦小麟. 一种基于深度强化学习的无人小车双层路径规划方法[J]. 计算机科学,2023,50(1):194−204. doi: 10.11896/jsjkx.220500241
HUANG Yuzhou,WANG Lisong,QIN Xiaolin. Bi-level path planning method for unmanned vehicle based on deep reinforcement learning[J]. Computer Science,2023,50(1):194−204. doi: 10.11896/jsjkx.220500241
|
[26] |
李辉,祁宇明. 一种复杂环境下基于深度强化学习的机器人路径规划方法[J]. 计算机应用研究,2020,37(S1):129−131.
LI Hui,QI Yuming. Robot path planning method based on deep reinforcement learning in complex environment[J]. Application Research of Computers,2020,37(S1):129−131.
|
[27] |
张旭辉,郑西利,杨文娟,等. 煤矿井下掘进机器人路径规划方法研究[J]. 煤田地质与勘探,2024,52(4):152−163. doi: 10.12363/issn.1001-1986.23.11.0748
ZHANG Xuhui,ZHENG Xili,YANG Wenjuan,et al. Research on path planning methods for underground roadheader robots[J]. Coal Geology & Exploration,2024,52(4):152−163. doi: 10.12363/issn.1001-1986.23.11.0748
|
[28] |
张保,张安思,梁国强,等. 激光雷达室内定位技术研究及应用综述[J]. 激光杂志,2023,44(3):1−9.
ZHANG Bao,ZHANG Ansi,LIANG Guoqiang,et al. Review of lidar indoor positioning technology research and application[J]. Laser Journal,2023,44(3):1−9.
|
[29] |
李永迪,李彩虹,张耀玉,等. 基于改进SAC算法的移动机器人路径规划[J]. 计算机应用,2023,43(2):654−660.
LI Yongdi,LI Caihong,ZHANG Yaoyu,et al. Mobile robot path planning based on improved SAC algorithm[J]. Journal of Computer Applications,2023,43(2):654−660.
|
[1] | WANG Dong, XING Xiaoyu, YIN Li, WANG Shougong, KONG Lingwei, MENG Xiangyu. Research on 3D stability algorithm of potential sliding body in surface mining in confined space[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(1): 133-144. DOI: 10.12438/cst.2024-0756 |
[2] | XIE Jiacheng, ZHENG Ziying, WANG Xuewen, MENG Hao, LIU Shuguang, LI Suhua. Preliminary research on the operation mode of virtual-real integration in fully-mechanized mining face based on industrial metaverse[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(10): 266-279. DOI: 10.13199/j.cnki.cst.2022-1864 |
[3] | ZHANG Xuhui, WEI Qiannan, WANG Miaoyun, ZHANG Yumeng, DU Yuyang, LV Xinyuan. Research on Remote Virtual Control System of Cantilever Roadheader[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(11): 44-51. |
[4] | ZHAO Wei, WANG Liang, CHEN Xiangjun, PAN Rongkun. Analysis of gas adsorption and diffusion characteristics of coal particles in confined space and model adaptation differences[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(9): 146-151. |
[5] | XIE Jiacheng, WANG Xuewen, LI Xiang, YANG Zhaojian. Research status and prospect of virtual reality technology in field of coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (3). |
[6] | LI Mei, SUN Zhenming, LYU Pingyang, CHEN Jinchuan, MAO Shanjun. Study on key technology of multiplayer virtual reality training platform forfully-mechanized coal mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (1). |
[7] | Zhang Xuhui Dong Runlin Ma Hongwei Du Yuyang Mao Qinghua Wang Chuanwei Xue Xusheng Ma Kun, . Study on remote control technology of mine rescue robot based on virtual reality[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (5). |
[8] | Integrated Design of Drilling Rig for Gas Drainage in Underground Mine Based on Virtual Prototype Machine Technology[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (7). |
[9] | Realization and Design on 3D Engine Framework of Virtual Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (7). |