Citation: | TIAN Ying,LI Chunzhi,CHEN Shuo,et al. Automatic picking method for ground penetrating radar wave groups at rough coal-rock interfaces[J]. Coal Science and Technology,2025,53(S1):317−326. DOI: 10.12438/cst.2024-0997 |
The automatic picking method for ground-penetrating radar wave groups at coal-rock interfaces is crucial for achieving online intelligent interpretation of coal-rock strata. Current research often assumes that coal-rock interfaces are smooth surfaces, neglecting the electromagnetic interference effects caused by rough surfaces. This limitation makes such methods unsuitable for high-frequency radar antennas or automatic tracking of coal-rock strata under complex geological conditions. To address this, a new method for automatic picking of ground-penetrating radar wave groups at rough coal-rock interfaces is proposed. This method employs a local extremum approach and an adaptive adjustment method based on local amplitude statistics to automatically extract and filter anchor points of potential coal-rock interface curves. Considering the impact of electromagnetic wave interference on the distribution characteristics of anchor points, a method for nearby growth within anchor point neighborhoods is introduced, using the amplitude coefficient of variation of anchor points as the criterion for terminating curve growth. The method also employs a RANSAC iterative fitting algorithm and waveform feature matching to classify and identify interfering hyperbolas and coal-rock interface curves. The spatial relationship of the vertices of the fitted curves is used to filter out interfering hyperbolas near rough interfaces. For the problem where the local trend of the coal-rock interface manifests as hyperbolas under specific geological conditions, amplitude attenuation models for rough coal-rock interface curves and interfering hyperbolas are constructed. By compensating for amplitude changes of co-curved anchor points while considering electromagnetic wave geometric diffusion effects, false detection of interfering hyperbolas is controlled. Forward modeling and experimental results show that this method can accurately detect the position of rough coal-rock interfaces. Its variable parameters are derived solely from known detection conditions and electrical properties of the rock layers, enabling automatic picking of ground-penetrating radar wave groups at coal-rock interfaces.
[1] |
张强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1−26.
ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1−26.
|
[2] |
张强,刘志恒,王海舰,等. 基于截齿振动及温度特性的煤岩识别研究[J]. 煤炭科学技术,2018,46(3):1−9,18.
ZHANG Qiang,LIU Zhiheng,WANG Haijian,et al. Study on coal and rock identification based on vibration and temperature features of picks[J]. Coal Science and Technology,2018,46(3):1−9,18.
|
[3] |
许献磊,王一丹,朱鹏桥,等. 基于高频雷达波的煤岩层位识别与追踪方法研究[J]. 煤炭科学技术,2022,50(7):50−58.
XU Xianlei,WANG Yidan,ZHU Pengqiao,et al. Research on coal and rock horizon identification and tracking method based on high frequency radar waves[J]. Coal Science and Technology,2022,50(7):50−58.
|
[4] |
刘澜波,钱荣毅. 探地雷达:浅表地球物理科学技术中的重要工具[J]. 地球物理学报,2015,58(8):2606−2617. doi: 10.6038/cjg20150802
LIU Lanbo,QIAN Rongyi. Ground Penetrating Radar:A critical tool in near-surface geophysics[J]. Chinese Journal of Geophysics,2015,58(8):2606−2617. doi: 10.6038/cjg20150802
|
[5] |
许献磊,彭苏萍,马正,等. 基于空气耦合雷达的矿井煤岩界面随采动态探测原理及关键技术[J]. 煤炭学报,2022,47(8):2961−2977.
XU Xianlei,PENG Suping,MA Zheng,et al. Principle and key technology of dynamic detection of coal-rock interface in coal mine based on air-coupled radar[J]. Journal of China Coal Society,2022,47(8):2961−2977.
|
[6] |
杨庭伟,冉孟坤,李静和,等. 探地雷达隧道地质预报智能化解译方法研究现状及进展[J]. 工程地球物理学报,2023,20(6):702−715. doi: 10.3969/j.issn.1672-7940.2023.06.002
YANG Tingwei,RAN Mengkun,LI Jinghe,et al. Review of intelligent interpretation methods for tunnel geological prediction using ground penetrating radar[J]. Chinese Journal of Engineering Geophysics,2023,20(6):702−715. doi: 10.3969/j.issn.1672-7940.2023.06.002
|
[7] |
SALINAS NAVAL V,SANTOS-ASSUNÇAO S,PÉREZ-GRACIA V. GPR clutter amplitude processing to detect shallow geological targets[J]. Remote Sensing,2018,10(1):88. doi: 10.3390/rs10010088
|
[8] |
DELL’ACQUA A,SARTI A,TUBARO S,et al. Detection of linear objects in GPR data[J]. Signal Processing,2004,84(4):785−799. doi: 10.1016/j.sigpro.2003.12.010
|
[9] |
WINDSOR C G,CAPINERI L,FALORNI P. A data pair-labeled generalized Hough transform for radar location of buried objects[J]. IEEE Geoscience and Remote Sensing Letters,2014,11(1):124−127. doi: 10.1109/LGRS.2013.2248119
|
[10] |
LI W T,CUI X H,GUO L,et al. Tree root automatic recognition in ground penetrating radar profiles based on randomized Hough transform[J]. Remote Sensing,2016,8(5):430. doi: 10.3390/rs8050430
|
[11] |
MERTENS L,PERSICO R,MATERA L,et al. Automated detection of reflection hyperbolas in complex GPR images with No A priori knowledge on the medium[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(1):580−596.
|
[12] |
PASOLLI E,MELGANI F,DONELLI M. Automatic analysis of GPR images:A pattern-recognition approach[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(7):2206−2217.
|
[13] |
GADER P D,MYSTKOWSKI M,ZHAO Y X. Landmine detection with ground penetrating radar using hidden Markov models[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(6):1231−1244. doi: 10.1109/36.927446
|
[14] |
YANG C C,BOSE N K. Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset[J]. IEEE Transactions on Neural Networks,2005,16(3):743−753. doi: 10.1109/TNN.2005.844906
|
[15] |
YOUN H S,CHEN C C. Neural detection for buried pipe using fully polarimetric GPR[C]//10th International Conference on Ground Penetrating Radar (GPR 2004),Delft:DelftUniv Technol,2004:303−306.
|
[16] |
KOBASHIGAWA J S,YOUN H S,ISKANDER M F,et al. Classification of buried targets using ground penetrating radar:Comparison between genetic programming and neural networks[J]. IEEE Antennas and Wireless Propagation Letters,2011,10:971−974. doi: 10.1109/LAWP.2011.2167120
|
[17] |
ZHANG J,YANG X,LI W G,et al. Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method[J]. Automation in Construction,2020,113:103119. doi: 10.1016/j.autcon.2020.103119
|
[18] |
REDMON J,FARHADI A. YOLOv3:An incremental improvement[EB/OL]. 2018:1804.02767. https://arxiv.org/abs/1804.02767v1.
|
[19] |
AKINLAR C,TOPAL C. EDLines:A real-time line segment detector with a false detection control[J]. Pattern Recognition Letters,2011,32(13):1633−1642. doi: 10.1016/j.patrec.2011.06.001
|
[20] |
AKINLAR C,TOPAL C. Edlines:Real-time line segment detection by Edge Drawing (ed)[C]//2011 18th IEEE International Conference on Image Processing. Piscataway,NJ:IEEE,2011:2837−2840.
|
[21] |
任新成. 粗糙面电磁散射及其与目标的复合散射研究[D]. 西安:西安电子科技大学,2008.
REN Xincheng. Study on electromagnetic scattering from rough surfaces and composite scattering with targets[D]. Xi’an:Xidian University,2008.
|
[22] |
GUO L X,REN Y C. Study on the doppler spectrum from the time-varying sea surface using Kirchoff approximation[C]//2004 Asia-Pacific Radio Science Conference,2004. Proceedings. Piscataway,NJ:IEEE,2004:47−49.
|
[23] |
杨光照. 基于探地雷达的煤岩界面识别技术研究[D]. 徐州:中国矿业大学,2019.
YANG Guangzhao. Research on coal-rock interface identification technology based on ground-penetrating radar[D]. Xuzhou:China University of Mining and Technology,2019.
|
[24] |
王宏伟,李超,梁威,等. 基于改进A*和势场法的轮式煤矿救援机器人路径规划[J]. 煤炭科学技术,2024,52(8):159−170. doi: 10.12438/cst.2023-1735
WANG Hongwei,LI Chao,LIANG Wei,et al. Path planning of wheeled coal mine rescue robot based on improved A* and potential field algorithm[J]. Coal Science and Technology,2024,52(8):159−170. doi: 10.12438/cst.2023-1735
|
[25] |
HARBI H,MCMECHAN G A. Conductivity and scattering Q in GPR data:Example from the ellenburger dolomite,central Texas[J]. Geophysics,2012,77(4):H63−H78. doi: 10.1190/geo2011-0337.1
|
[26] |
TICCONI F,PULVIRENTI L,PIERDICC N. Models for scattering from rough surfaces[M]//Electromagnetic waves. Graz:InTech,2011:203−226.
|
[27] |
TABATABAEENEJAD A,DUAN X Y,MOGHADDAM M. Coherent scattering of electromagnetic waves from two-layer rough surfaces within the Kirchhoff regime[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51(7):3943−3953. doi: 10.1109/TGRS.2012.2229391
|