Advance Search
ZHANG Qiang,YANG Kang,CAO Jinming,et al. Solid intelligent backfill coal mining method with video ai algorithm analysis in coal mine[J]. Coal Science and Technology,2024,52(11):163−173. DOI: 10.12438/cst.2024-0955
Citation: ZHANG Qiang,YANG Kang,CAO Jinming,et al. Solid intelligent backfill coal mining method with video ai algorithm analysis in coal mine[J]. Coal Science and Technology,2024,52(11):163−173. DOI: 10.12438/cst.2024-0955

Solid intelligent backfill coal mining method with video ai algorithm analysis in coal mine

More Information
  • Received Date: July 06, 2024
  • Available Online: October 29, 2024
  • The solid backfilling mining method has great advantages in handling coal-based solid waste and controlling surface subsidence, but its low backfilling efficiency, long succession time and high labour intensity constrain the development of green backfilling mining. Aiming at the endogenous driving force of solid backfilling technology upgrading, the urgent demand of industry development and the inevitable trend of mine intelligent construction, the solid intelligent backfilling method analysed by video AI algorithm is proposed. Initially, this paper examines the essence and challenges of intelligent solid backfilling methods, establishes the system framework for analyzing the intelligent solid backfilling mining method using video AI algorithms, elucidates the operational principles and implementation process of the video AI algorithm, and outlines the capabilities that can be achieved through this algorithm. It analyzes the influencing factors on key backfilling equipment under different geological conditions. The hydraulic support framework modeling was conducted using Creo to simulate its movement in various working conditions; corresponding control criteria and paths were provided, along with a designed control algorithm flow for key backfilling equipment across different processes. Based on the characteristics of video algorithms and their pros and cons, an image recognition algorithm is initially chosen; after training and adjusting the model, optimal algorithms and corresponding parameters are determined. Through an analysis of application effects on an coal mine fill surfaces, it is found that SVM evaluation indices outperform other algorithms, indicating excellent performance in discriminating working conditions with high accuracy and reliability. The research can realize the identification and regulation of abnormal working conditions of key backfilling equipment mechanism, improve backfilling efficiency, identify the positional parameters of the mechanism, and display the effect of backfilling space tamping, which can provide theoretical guidance for the research, development and application of solid intelligent backfilling and mining technology analyzed by video AI algorithm.

  • [1]
    钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1−13.

    QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1−13.
    [2]
    谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187−1197.

    XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187−1197.
    [3]
    康红普,徐刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报,2019,1(2):7−39.

    KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(2):7−39.
    [4]
    张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.

    ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
    [5]
    刘建功,王翰秋,赵家巍. 煤矿固体充填采煤技术发展回顾与展望[J]. 煤炭科学技术,2020,48(9):27−38.

    LIU Jiangong,WANG Hanqiu,ZHAO Jiawei. Review and prospect of development of solid backfill technology in coal mine[J]. Coal Science and Technology,2020,48(9):27−38.
    [6]
    刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五” 发展方向[J]. 煤炭学报,2021,46(1):1−15.

    LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1−15.
    [7]
    石金龙,马宏伟,毛清华,等. “惯导+里程计” 的采煤机定位方法研究[J]. 煤炭工程,2021,53(10):143−147.

    SHI Jinlong,MA Hongwei,MAO Qinghua,et al. Positioning method of shearer based on “SINS+OD”[J]. Coal Engineering,2021,53(10):143−147.
    [8]
    曹波,王世博,葛世荣,等. 基于超宽带系统的采煤机端头定位策略及定位技术研究[J]. 煤炭科学技术,2022,50(3):257−266.

    CAO Bo,WANG Shibo,GE Shirong,et al. Study on positioning strategy and technology at end of shearer based on ultra-wideband system[J]. Coal Science and Technology,2022,50(3):257−266.
    [9]
    崔耀,叶壮. 基于5G+云边端协同技术的采煤机智能调高调速控制系统设计与应用[J]. 煤炭科学技术,2023,51(6):205−216.

    CUI Yao,YE Zhuang. Research on cloud-edge-terminal collaborative intelligent control of coal shearer based on 5G communication[J]. Coal Science and Technology,2023,51(6):205−216.
    [10]
    王国法,刘峰,庞义辉,等. 煤矿智能化:煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349−357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:The core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349−357.
    [11]
    韩剑. 采煤机智能化截割监测系统的研究[J]. 机械管理开发,2022,37(9):236−237,242.

    HAN Jian. Research on intelligent cut-off monitoring system for coal mining machines[J]. Mechanical Management and Development,2022,37(9):236−237,242.
    [12]
    郅富标. 智能化综采工作面采煤机与液压支架协同控制技术应用研究[J]. 煤矿机械,2021,42(2):177−180.

    ZHI Fubiao. Application research on cooperative control technology of shearer and hydraulic support in intelligent fully mechanized coal mining face[J]. Coal Mine Machinery,2021,42(2):177−180.
    [13]
    袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7.

    YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1−7.
    [14]
    张强,王云搏,张吉雄,等. 煤矿固体智能充填开采方法研究[J]. 煤炭学报,2022,47(7):2546−2556.

    ZHANG Qiang,WANG Yunbo,ZHANG Jixiong,et al. Research on intelligent solid backfilling mining method in coal mine[J]. Journal of China Coal Society,2022,47(7):2546−2556.
    [15]
    廉自生,袁祥,高飞,等. 液压支架网络化智能感控方法[J]. 煤炭学报,2020,45(6):2078−2089.

    LIAN Zisheng,YUAN Xiang,GAO Fei,et al. Networked intelligent sensing method for powered support[J]. Journal of China Coal Society,2020,45(6):2078−2089.
    [16]
    王增加,齐兆军,寇云鹏,等. 智慧充填系统赋能矿山新发展[J]. 矿业研究与开发,2022,42(1):156−161.

    WANG Zengjia,QI Zhaojun,KOU Yunpeng,et al. Intelligent filling system enabling new development of mine[J]. Mining Research and Development,2022,42(1):156−161.
    [17]
    任怀伟,王国法,赵国瑞,等. 智慧煤矿信息逻辑模型及开采系统决策控制方法[J]. 煤炭学报,2019,44(9):2923−2935.

    REN Huaiwei,WANG Guofa,ZHAO Guorui,et al. Smart coal mine logic model and decision control method of mining system[J]. Journal of China Coal Society,2019,44(9):2923−2935.
    [18]
    张建中,郭军. 智慧矿山工业互联网技术架构探讨[J]. 煤炭科学技术,2022,50(5):238−246.

    ZHANG Jianzhong,GUO Jun. Discussion on industrial Internet technology framework of smart mine[J]. Coal Science and Technology,2022,50(5):238−246.
    [19]
    高辉,赵磊,杜新胜,等. 多孔底卸式充填刮板输送机的研究与设计[J]. 煤矿机械,2014,35(6):131−133.

    GAO Hui,ZHAO Lei,DU Xinsheng,et al. Research and design on waste backfilling AFC[J]. Coal Mine Machinery,2014,35(6):131−133.
    [20]
    王晓峰,万宏凤,孙跃军. 固体充填刮板输送机卸料口控制机构的优化设计[J]. 煤矿机械,2016,37(10):119−121.

    WANG Xiaofeng,WAN Hongfeng,SUN Yuejun. Study on structure optimization design of unloading mouth of solid filling armored face conveyor[J]. Coal Mine Machinery,2016,37(10):119−121.
    [21]
    李凤锦,吴桐,翟荣涛,等. 邢东矿充填自动化控制技术研究[J]. 煤炭科学技术,2021,49(S1):84−88.

    LI Fengjin,WU Tong,ZHAI Rongtao,et al. Research on backfilling automation control technology in Xingdong Mine[J]. Coal Science and Technology,2021,49(S1):84−88.
  • Cited by

    Periodical cited type(6)

    1. 范文涛,杨思奥,朱泉霖,牟宏伟,张永亮. MIL-101(Cr)@SBA-15复合材料制备及其吸附金属矿山CO_2特性研究. 黄金科学技术. 2025(01): 173-183 .
    2. 刘传海,藏岐峰,张保勇,吴强,张强,吴琼. 驱动力对煤介质中CO_2水合物生长动力学的影响. 黑龙江科技大学学报. 2024(01): 1-7 .
    3. 田娇,杨洪,杨智成. 炭质泥岩地层隧道瓦斯突出成因及处治措施研究. 公路交通技术. 2024(04): 158-165 .
    4. 傅雪海,许行行,王强,陈义林,兰凤娟,康俊强,张宝鑫,卢杰林. 煤层气异常成分的界定、分布及其成因研究进展. 煤炭科学技术. 2023(01): 343-352 . 本站查看
    5. 吴强,韩慧明,刘传海,陈冉,张保勇,赵子琪,王维维. 含煤体系瓦斯水合物相平衡测定与分解热计算. 中国矿业大学学报. 2023(06): 1108-1118 .
    6. 杨光耀,陈真. 压剪下煤矿岩石裂纹起裂角研究. 煤炭技术. 2022(10): 36-38 .

    Other cited types(1)

Catalog

    Article views (108) PDF downloads (39) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return