Advance Search
ZHU Yuewen,SHANG Fuhua,MA Shuwei,et al. Heterogeneity and influencing factors of pore structure in different coal ranks[J]. Coal Science and Technology,2025,53(S1):173−182. DOI: 10.12438/cst.2024-0843
Citation: ZHU Yuewen,SHANG Fuhua,MA Shuwei,et al. Heterogeneity and influencing factors of pore structure in different coal ranks[J]. Coal Science and Technology,2025,53(S1):173−182. DOI: 10.12438/cst.2024-0843

Heterogeneity and influencing factors of pore structure in different coal ranks

More Information
  • Received Date: June 20, 2024
  • Available Online: May 25, 2025
  • To study the pore structure heterogeneity and influencing factors of different coal ranks, 8 coal samples with different coal ranks were tested through low-temperature N2 and CO2 adsorption experiments. The fractal dimension of different coal ranks was calculated using the Frenkel-Halsey-Hill (FHH) model, the evolution law of fractal dimension in coalification was analyzed and the influence of coal quality on the fractal characteristics of pore structure was explored based on the characteristics of coal quality. The results show that: ① In the coalification process, the moisture and volatile matter in coal gradually decrease, and the fixed carbon content gradually increases, while the ash yield has no significant correlation with coalification. ② The mesoporous parameters of coal have no significant correlation with maturity, while the micropore parameters exhibit a U-shaped change trend with the increase of maturity, that is the microporous parameters first gradually decrease and then gradually increase after the second coalification jump. ③ The fractal dimensions D1, D2 and Dc of different coal ranks are generally closely related to coalification, with the highest correlation observed in the microporous fractal dimension Dc (R2=0.7092), which is mainly related to the formation of abundant secondary pores during the thermal evolution process. ④ The fractal dimensions D1, D2 and Dc have no significant correlation with moisture content and ash yield, while have a negative correlation with volatile matter and fixed carbon content, which is closely related to the change in coal quality during coalification. The study result can provide a significant reference basis for the evaluation of coalbed methane resources in different coal ranks.

  • [1]
    徐凤银,聂志宏,孙伟,等. 大宁—吉县区块深部煤层气高效开发理论技术体系[J/OL]. (2023−11−22) [2024−05−18]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20231120003&dbname=CJFD&dbcode=CJFQ.

    XU Fengyin,NIE Zhihong,SUN Wei,et al. Theoretical and technical system for efficient development of deep coalbed methane in Daning-Jixian block[J/OL]. (2023−11−22) [2024−05−18]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20231120003&dbname=CJFD&dbcode=CJFQ.
    [2]
    徐凤银,王成旺,熊先钺,等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报,2023,44(11):1764−1780. doi: 10.7623/syxb202311002

    XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1764−1780. doi: 10.7623/syxb202311002
    [3]
    苏育飞. 山西煤成气勘查开采新进展及发展对策[J]. 非常规油气,2024,11(3):1−9.

    SU Yufei. New progress and development countermeasures of Shanxi CBM exploration and mining[J]. Unconventional Oil & Gas,2024,11(3):1−9.
    [4]
    穆福元,王红岩,吴京桐,等. 中国煤层气开发实践与建议[J]. 天然气工业,2018,38(9):55−60. doi: 10.3787/j.issn.1000-0976.2018.09.007

    MU Fuyuan,WANG Hongyan,WU Jingtong,et al. Practice of and suggestions on CBM development in China[J]. Natural Gas Industry,2018,38(9):55−60. doi: 10.3787/j.issn.1000-0976.2018.09.007
    [5]
    MOORE T A. Coalbed methane:A review[J]. International Journal of Coal Geology,2012,101:36−81. doi: 10.1016/j.coal.2012.05.011
    [6]
    侯泉林,李会军,范俊佳,等. 构造煤结构与煤层气赋存研究进展[J]. 中国科学:地球科学,2012,42(10):1487−1495. doi: 10.1360/zd-2012-42-10-1487

    HOU Quanlin,LI Huijun,FAN Junjia,et al. Research progress on structural coal structure and coalbed methane occurrence[J]. Scientia Sinica (Terrae),2012,42(10):1487−1495. doi: 10.1360/zd-2012-42-10-1487
    [7]
    CAI Y D,LIU D M,PAN Z J,et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from NorthEast China[J]. Fuel,2013,103:258−268. doi: 10.1016/j.fuel.2012.06.055
    [8]
    刘大锰,李俊乾. 我国煤层气分布赋存主控地质因素与富集模式[J]. 煤炭科学技术,2014,42(6):19−24.

    LIU Dameng,LI Junqian. Main geological controls on distribution and occurence and enrichment patterns of coalbed methane in China[J]. Coal Science and Technology,2014,42(6):19−24.
    [9]
    张玉贵,焦银秋,雷东记,等. 煤体纳米级孔隙低温氮吸附特征及分形性研究[J]. 河南理工大学学报(自然科学版),2016,35(2):141−148.

    ZHANG Yugui,JIAO Yinqiu,LEI Dongji,et al. Study on adsorption characteristics and fractal properties of nano-scale pores at low temperature coal[J]. Journal of Henan Polytechnic University (Natural Science),2016,35(2):141−148.
    [10]
    赵迪斐,郭英海,毛潇潇,等. 基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J]. 煤炭学报,2017,42(6):1517−1526.

    ZHAO Difei,GUO Yinghai,MAO Xiaoxiao,et al. Characteristics of macro-nanopores in anthracite coal based on mercury injection,nitrogen adsorption and FE-SEM[J]. Journal of China Coal Society,2017,42(6):1517−1526.
    [11]
    YAN J W,MENG Z P,ZHANG K,et al. Pore distribution characteristics of various rank coals matrix and their influences on gas adsorption[J]. Journal of Petroleum Science and Engineering,2020,189:107041. doi: 10.1016/j.petrol.2020.107041
    [12]
    关欣,刘育伟,任重阳,等. 基于CT三维重构的无烟煤孔隙结构及连通性特征对比表征[J]. 非常规油气,2023,10(1):69−76.

    GUAN Xin,LIU Yuwei,REN Chongyang,et al. Characterization and comparison of pore structure and connectivity of anthracite based on CT three-dimensional reconstruction[J]. Unconventional Oil & Gas,2023,10(1):69−76.
    [13]
    张昆,孟召平,金毅,等. 不同煤体结构煤的孔隙结构分形特征及其研究意义[J]. 煤炭科学技术,2023,51(10):198−206.

    ZHANG Kun,MENG Zhaoping,JIN Yi,et al. Fractal characteristics of pore structures on different coal structures and its research significance[J]. Coal Science and Technology,2023,51(10):198−206.
    [14]
    陈向军,赵伞,司朝霞,等. 不同变质程度煤孔隙结构分形特征对瓦斯吸附性影响[J]. 煤炭科学技术,2020,48(2):118−124.

    CHEN Xiangjun,ZHAO San,SI Zhaoxia,et al. Fractal characteristics of pore structure of coal with different metamorphic degrees and its effect on gas adsorption characteristics[J]. Coal Science and Technology,2020,48(2):118−124.
    [15]
    NIE B S,LIU X F,YANG L L,et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel,2015,158:908−917. doi: 10.1016/j.fuel.2015.06.050
    [16]
    李凤丽,姜波,宋昱,等. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学,2017,28(1):173−182.

    LI Fengli,JIANG Bo,SONG Yu,et al. Nano scale pore structure and fractal characteristics of low-medium metamorphic tectonically deformed coal[J]. Natural Gas Geoscience,2017,28(1):173−182.
    [17]
    高迪,刘建国. 沁水盆地东南部高阶煤孔隙分形特征及意义[J]. 河南理工大学学报(自然科学版),2017,36(2):7−15.

    GAO Di,LIU Jianguo. Pore fractal characteristics and significance of high-rank coal in Southern Qinshui Basin[J]. Journal of Henan Polytechnic University (Natural Science),2017,36(2):7−15.
    [18]
    秦勇,姜波,王继尧,等. 沁水盆地煤层气构造动力条件耦合控藏效应[J]. 地质学报,2008,82(10):1355−1362. doi: 10.3321/j.issn:0001-5717.2008.10.007

    QIN Yong,JIANG Bo,WANG Jiyao,et al. Coupling control of tectonic dynamical conditions to coalbed methane reservoir formation in the Qinshui basin,Shanxi,China[J]. Acta Geologica Sinica,2008,82(10):1355−1362. doi: 10.3321/j.issn:0001-5717.2008.10.007
    [19]
    LI M F,ZENG F G,CHANG H Z,et al. Aggregate structure evolution of low-rank coals during pyrolysis by in situ X-ray diffraction[J]. International Journal of Coal Geology,2013,116:262−269.
    [20]
    Gregg Sideny John and Sing Kenneth Stafford William. (1982)Adsorption,Surface Area and Porosity,2nd Edn,Academic Press,London.
    [21]
    MASTALERZ M,SCHIMMELMANN A,DROBNIAK A,et al. Porosity of Devonian and Mississippian new Albany shale across a maturation gradient:Insights from organic petrology,gas adsorption,and mercury intrusion[J]. AAPG Bulletin,2013,97(10):1621−1643. doi: 10.1306/04011312194
    [22]
    王青青,孟艳军,闫涛滔,等. 不同煤阶煤储层吸附/解吸特征差异及其对产能的影响[J]. 煤田地质与勘探,2023,51(5):66−77. doi: 10.12363/issn.1001-1986.22.10.0816

    WANG Qingqing,MENG Yanjun,YAN Taotao,et al. Differences in the adsorption/desorption characteristics of coal reservoirs with different coal ranks and their effects on the reservoir productivity[J]. Coal Geology & Exploration,2023,51(5):66−77. doi: 10.12363/issn.1001-1986.22.10.0816
    [23]
    刘高峰,李宝林,张震,等. 不同变质煤的瓦斯膨胀能演化特征及其突出预测启示[J]. 煤田地质与勘探,2023,51(10):1−8. doi: 10.12363/issn.1001-1986.23.02.0103

    LIU Gaofeng,LI Baolin,ZHANG Zhen,et al. Gas expansion energy of coals with different metamorphic degrees:Evolutionary characteristics and their implications for the outburst prediction[J]. Coal Geology & Exploration,2023,51(10):1−8. doi: 10.12363/issn.1001-1986.23.02.0103
    [24]
    OKOLO G N,EVERSON R C,NEOMAGUS H W J P,et al. Comparing the porosity and surface areas of coal as measured by gas adsorption,mercury intrusion and SAXS techniques[J]. Fuel,2015,141:293−304. doi: 10.1016/j.fuel.2014.10.046
    [25]
    TEICHMÜLLER M. The genesis of coal from the viewpoint of coal geology[J]. International Journal of Coal Geology,1990,16(1-3):121−124. doi: 10.1016/0166-5162(90)90016-R
    [26]
    王爱宽,王庆晖. 褐煤有机显微组分生物气产出模拟实验研究[J]. 非常规油气,2023,10(2):1−8,42.

    WANG Aikuan,WANG Qinghui. Simulated experimental study of biogas generation from lignite and its organic maceral[J]. Unconventional Oil & Gas,2023,10(2):1−8,42.
    [27]
    DAI S F,FINKELMAN R B. Coal geology in China:An overview[J]. International Geology Review,2018,60(5−6):531−534. doi: 10.1080/00206814.2017.1405287
    [28]
    JIAN K,FU X H,DING Y M,et al. Characteristics of pores and methane adsorption of low-rank coal in China[J]. Journal of Natural Gas Science and Engineering,2015,27:207−218. doi: 10.1016/j.jngse.2015.08.052
    [29]
    TAO S,CHEN S D,TANG D Z,et al. Material composition,pore structure and adsorption capacity of low-rank coals around the first coalification jump:A case of eastern Junggar Basin,China[J]. Fuel,2018,211:804−815. doi: 10.1016/j.fuel.2017.09.087
    [30]
    ZHAO S,SHAO L Y,HOU H H,et al. Methane adsorption characteristics and its influencing factors of the medium-to-high rank coals in the Anyang-Hebi coalfield,northern China[J]. Energy Exploration & Exploitation,2019,37(1):60−82.
    [31]
    邵龙义,李佳旭,王帅,等. 海拉尔盆地褐煤液氮吸附孔的孔隙结构及分形特征[J]. 天然气工业,2020,40(5):15−25. doi: 10.3787/j.issn.1000-0976.2020.05.002

    SHAO Longyi,LI Jiaxu,WANG Shuai,et al. Pore structures and fractal characteristics of liquid nitrogen adsorption pores in lignite in the Hailar Basin[J]. Natural Gas Industry,2020,40(5):15−25. doi: 10.3787/j.issn.1000-0976.2020.05.002
    [32]
    JAKAB E,TILL F,VÁRHEGYI G. Thermogravimetric-mass spectrometric study on the low temperature oxidation of coals[J]. Fuel Processing Technology,1991,28(3):221−238. doi: 10.1016/0378-3820(91)90076-O
    [33]
    ARENILLAS A,RUBIERA F,PIS J J,et al. Thermal behaviour during the pyrolysis of low rank perhydrous coals[J]. Journal of Analytical and Applied Pyrolysis,2003,68:371−385.
    [34]
    ERDENETSOGT B O,LEE I,LEE S K,et al. Solid-state C-13 CP/MAS NMR study of baganuur coal,Mongolia:Oxygen-loss during coalification from lignite to subbituminous rank[J]. International Journal of Coal Geology,2010,82(1-2):37−44. doi: 10.1016/j.coal.2010.02.005
    [35]
    HOU H H,SHAO L Y,LI Y H,et al. Influence of coal petrology on methane adsorption capacity of the Middle Jurassic coal in the Yuqia Coalfield,northern Qaidam Basin,China[J]. Journal of Petroleum Science and Engineering,2017,149:218−227. doi: 10.1016/j.petrol.2016.10.026
    [36]
    CHEN S D,TAO S,TANG D Z,et al. Pore structure characterization of different rank coals using N2 and CO2 adsorption and its effect on CH4 adsorption capacity:A case in panguan syncline,western Guizhou,China[J]. Energy & Fuels,2017,31(6):6034−6044.
    [37]
    LIU Y,ZHU Y M,LIU S M,et al. Molecular structure controls on micropore evolution in coal vitrinite during coalification[J]. International Journal of Coal Geology,2018,199:19−30. doi: 10.1016/j.coal.2018.09.012
    [38]
    张守仁,曹代勇,陈佩佩,等. 高煤阶煤的阶跃性演化机理研究[J]. 煤炭学报,2002,27(5):525−528. doi: 10.3321/j.issn:0253-9993.2002.05.017

    ZHANG Shouren,CAO Daiyong,CHEN Peipei,et al. Study on the step evolution mechanism of high-rank coal[J]. Journal of China Coal Society,2002,27(5):525−528. doi: 10.3321/j.issn:0253-9993.2002.05.017
    [39]
    李伍,朱炎铭,陈尚斌,等. 低煤级煤生烃与结构演化的耦合机理研究[J]. 光谱学与光谱分析,2013,33(4):1052. doi: 10.3964/j.issn.1000-0593(2013)04-1052-05

    LI Wu,ZHU Yanming,CHEN Shangbin,et al. Study of coupling mechanism between hydrocarbon generation and structure evolution in low rank coal[J]. Spectroscopy and Spectral Analysis,2013,33(4):1052. doi: 10.3964/j.issn.1000-0593(2013)04-1052-05
    [40]
    郝盼云,孟艳军,曾凡桂,等. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析,2020,40(3):787.

    HAO Panyun,MENG Yanjun,ZENG Fangui,et al. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(3):787.
    [41]
    刘宇. 煤镜质组结构演化对甲烷吸附的分子级作用机理[D]. 徐州:中国矿业大学,2019.

    LIU Yu. Molecular mechanism of methane adsorption by structural evolution of coal vitrinite[D]. Xuzhou:China University of Mining and Technology,2019.
    [42]
    PAN J N,ZHU H T,HOU Q L,et al. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J]. Fuel,2015,139:94−101. doi: 10.1016/j.fuel.2014.08.039
    [43]
    ROMERO-SARMIENTO M F,ROUZAUD J N,BERNARD S,et al. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J]. Organic Geochemistry,2014,71:7−16. doi: 10.1016/j.orggeochem.2014.03.008
    [44]
    PRINZ D,PYCKHOUT-HINTZEN W,LITTKE R. Development of the meso- and macroporous structure of coals with rank as analysed with small angle neutron scattering and adsorption experiments[J]. Fuel,2004,83(4-5):547−556. doi: 10.1016/j.fuel.2003.09.006
    [45]
    PAN J N,ZHAO Y Q,HOU Q L,et al. Nanoscale pores in coal related to coal rank and deformation structures[J]. Transport in Porous Media,2015,107(2):543−554. doi: 10.1007/s11242-015-0453-5
    [46]
    姚铭檑,邵龙义,侯海海,等. 两淮煤田煤储层吸附孔孔隙结构及分形特征[J]. 中国煤炭地质,2018,30(1):30−36,47. doi: 10.3969/j.issn.1674-1803.2018.01.05

    YAO Minglei,SHAO Longyi,HOU Haihai,et al. Coal reservoir adsorptive pore structural and fractal features in Huainan and Huaibei coalfields[J]. Coal Geology of China,2018,30(1):30−36,47. doi: 10.3969/j.issn.1674-1803.2018.01.05
    [47]
    RODRIGUES C F,LEMOS DE SOUSA M J. The measurement of coal porosity with different gases[J]. International Journal of Coal Geology,2002,48(3−4):245−251. doi: 10.1016/S0166-5162(01)00061-1
    [48]
    唐书恒,蔡超,朱宝存,等. 煤变质程度对煤储层物性的控制作用[J]. 天然气工业,2008,28(12):30−33,53,136. doi: 10.3787/j.issn.1000-0976.2008.12.007

    TANG Shuheng,CAI Chao,ZHU Baocun,et al. Control effect of coal metamorphic degree on physical properties of coal reservoirs[J]. Natural Gas Industry,2008,28(12):30−33,53,136. doi: 10.3787/j.issn.1000-0976.2008.12.007
    [49]
    姚艳斌,刘大锰. 煤储层精细定量表征与综合评价模型[M]. 北京:地质出版社,2013.
    [50]
    FU H J,TANG D Z,XU T,et al. Characteristics of pore structure and fractal dimension of low-rank coal:A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin,NW China[J]. Fuel,2017,193:254−264. doi: 10.1016/j.fuel.2016.11.069
    [51]
    周三栋,刘大锰,蔡益栋,等. 低阶煤吸附孔特征及分形表征[J]. 石油与天然气地质,2018,39(2):373−383. doi: 10.11743/ogg20180216

    ZHOU Sandong,LIU Dameng,CAI Yidong,et al. Characterization and fractal nature of adsorption pores in low rank coal[J]. Oil & Gas Geology,2018,39(2):373−383. doi: 10.11743/ogg20180216

Catalog

    Article views (26) PDF downloads (19) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return