Citation: | GE Xinbo,HUANG Jun,ZHAO Tongbin,et al. Research progress on underground compressed air energy storage based on knowledge graph[J]. Coal Science and Technology,2025,53(4):80−103. DOI: 10.12438/cst.2024-0780 |
Compressed Air Energy Storage (CAES), as a large-scale, long-duration physical energy storage technology, offers significant advantages such as a long operational lifespan, large storage capacity, and rapid response. It plays a key role in improving energy utilization efficiency, mitigating the fluctuations of renewable energy, and enhancing the safety and economic performance of power systems. As such, CAES is a strategic emerging industry that is being vigorously developed in China. Based on the analysis of CAES-related literature from 1985 to 2023 in the CNKI and Web of Science databases, this study utilizes VOSviewer, CiteSpace scientific knowledge mapping software, and Origin software to review the research background of underground CAES and comprehensively analyze its scientific production, research hotspots, and evolutionary trends.The study covers various storage methods, ranging from salt cavern and artificial chamber to abandoned mine, revealing the current development status and future directions of underground CAES. Results indicate that under the impetus of the “dual carbon” goals and the modernization of the national energy layout, underground CAES is experiencing rapid development, with new storage methods emerging, including salt cavern, artificial chamber, abandoned mine, depleted oil and gas reservoirs, and underground aquifers. Research hotspots primarily focus on three storage methods: salt cavern, artificial chamber and abandoned mine. Salt cavern storage, due to its low permeability, excellent rheological properties, and self-healing capabilities, has become a global focal point. Artificial chamber are gaining attention for their strong sealing and pressure-bearing capacity, although their high construction costs and technical challenges remain significant barriers. Abandoned mine, characterized by abundant resources, wide distribution, and low cost, present a promising storage solution, but critical issues regarding airtightness and stability still require breakthroughs. From the perspective of scientific networks, China’s underground CAES research teams have achieved significant international influence. However, collaborations among scholars remain largely confined to the same institution or research group, highlighting the need to strengthen inter-institutional cooperation. Moving forward, it is essential to enhance academic collaboration networks and promote interdisciplinary research to accelerate technological innovation and application. On the policy front, China has gradually established a policy framework to support the development of CAES, with related incentives expected to further drive the large-scale development of underground CAES. Overall, CAES technology is poised to play an indispensable role in optimizing the energy structure, enhancing energy storage capacity, ensuring energy security, and achieving the “dual carbon” goals.
[1] |
习近平. 继往开来,开启全球应对气候变化新征程——在气候雄心峰会上的讲话[J]. 中华人民共和国国务院公报,2020(35):7.
|
[2] |
孙晓霞,桂中华,张新敬,等. 压缩空气储能与可再生能源耦合研究进展[J]. 中国电机工程学报,2023,43(23):9224−9242.
SUN Xiaoxia,GUI Zhonghua,ZHANG Xinjing,et al. Research progress on compressed air energy storage coupled with renewable energy[J]. Proceedings of the CSEE,2023,43(23):9224−9242.
|
[3] |
刘笑驰,梅生伟,丁若晨,等. 压缩空气储能工程现状、发展趋势及应用展望[J]. 电力自动化设备,2023,43(10):38−47,102.
LIU Xiaochi,MEI Shengwei,DING Ruochen,et al. Current situation,development trend and application prospect of compressed air energy storage engineering projects[J]. Electric Power Automation Equipment,2023,43(10):38−47,102.
|
[4] |
谢小荣,马宁嘉,刘威,等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报,2023,43(1):158−168.
XIE Xiaorong,MA Ningjia,LIU Wei,et al. Functions of energy storage in renewable energy dominated power systems:Review and prospect[J]. Proceedings of the CSEE,2023,43(1):158−168.
|
[5] |
YANG C H,WANG T T,CHEN H S. Theoretical and technological challenges of deep underground energy storage in China[J]. Engineering,2023,25:168−181. doi: 10.1016/j.eng.2022.06.021
|
[6] |
中国科学院武汉文献情报中心学科情报团队,中国科学院武汉岩土力学研究所油气地下储备与开发研究中心团队,李娜娜,等. 趋势观察:国际盐穴储能战略与科技发展态势分析[J]. 中国科学院院刊,2021,36(10):1248−1252.
|
[7] |
杨春和,王同涛. 深地储能研究进展[J]. 岩石力学与工程学报,2022,41(9):1729−1759.
YANG Chunhe,WANG Tongtao. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1729−1759.
|
[8] |
DIEZMARTÍNEZ C V. Clean energy transition in Mexico:Policy recommendations for the deployment of energy storage technologies[J]. Renewable and Sustainable Energy Reviews,2021,135:110407. doi: 10.1016/j.rser.2020.110407
|
[9] |
蒋中明,刘宇婷,陆希,等. 压气储能内衬硐室储气关键问题与设计要点评述[J]. 岩土力学,2024,45(12):3491−3509.
JIANG Zhongming,LIU Yuting,LU Xi,et al. Review on key scientific and design issues of lined rock caverns for compressed air energy storage[J]. Rock and Soil Mechanics,2024,45(12):3491−3509.
|
[10] |
赵同彬,刘淑敏,马洪岭,等. 废弃煤矿压缩空气储能研究现状与发展趋势[J]. 煤炭科学技术,2023,51(10):163−176. doi: 10.12438/cst.2023-0131
ZHAO Tongbin,LIU Shumin,MA Hongling,et al. Research status and development trend of compressed air energy storage in abandoned coal mines[J]. Coal Science and Technology,2023,51(10):163−176. doi: 10.12438/cst.2023-0131
|
[11] |
张新敬,陈海生,刘金超,等. 压缩空气储能技术研究进展[J]. 储能科学与技术,2012,1(1):26−40.
ZHANG Xinjing,CHEN Haisheng,LIU Jinchao,et al. Research progress in compressed air energy storage system:A review[J]. Energy Storage Science and Technology,2012,1(1):26−40.
|
[12] |
陈海生,李泓,徐玉杰,等. 2023年中国储能技术研究进展[J]. 储能科学与技术,2024,13(5):1359−1397.
CHEN Haisheng,LI Hong,XU Yujie,et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology,2024,13(5):1359−1397.
|
[13] |
陈海生,李泓,徐玉杰,等. 2022年中国储能技术研究进展[J]. 储能科学与技术,2023,12(5):1516−1552.
CHEN Haisheng,LI Hong,XU Yujie,et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology,2023,12(5):1516−1552.
|
[14] |
陈海生,刘畅,徐玉杰,等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术,2021,10(5):1477−1485.
CHEN Haisheng,LIU Chang,XU Yujie,et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology,2021,10(5):1477−1485.
|
[15] |
JAFARIZADEH H,SOLTANI M,NATHWANI J. Assessment of the Huntorf compressed air energy storage plant performance under enhanced modifications[J]. Energy Conversion and Management,2020,209:112662. doi: 10.1016/j.enconman.2020.112662
|
[16] |
HOUNSLOW D R,GRINDLEY W,LOUGHLIN R M,et al. The development of a combustion system for a 110 MW CAES plant[J]. Journal of Engineering for Gas Turbines and Power,1998,120(4):875−883. doi: 10.1115/1.2818482
|
[17] |
YOKOYAMA H,SHINOHARA S,KATO Y. Demonstrative operation of pilot plant for compressed air energy storage power generation[J]. Japan Electric Power Civil Engineering Association,JEPOC Journal,2002,300:151−154.
|
[18] |
杨雪雯,任灏,廖泽球,等. 压缩空气储能地下人工洞室研究现状与展望[J]. 南方能源建设,2024,11(4):54−64.
YANG Xuewen,REN Hao,LIAO Zeqiu,et al. Research status and prospect of underground artificial cavern with compressed air energy storage[J]. Southern Energy Construction,2024,11(4):54−64.
|
[19] |
陈海生,李泓,马文涛,等. 2021年中国储能技术研究进展[J]. 储能科学与技术,2022,11(3):1052−1076.
CHEN Haisheng,LI Hong,MA Wentao,et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology,2022,11(3):1052−1076.
|
[20] |
孙冠华,王娇,于显杨,等. 压缩空气储能地下内衬硐库基本原理与分析方法研究进展[J]. 岩土力学,2025,46(1):1−25.
SUN Guanhua,WANG Jiao,YU Xianyang,et al. Research progress on the basic principles and analysis methods of lined rock caverns for compressed air energy storage[J]. Rock and Soil Mechanics,2025,46(1):1−25.
|
[21] |
万明忠,王元媛,李峻,等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源,2023,45(9):26−31. doi: 10.3969/j.issn.2097-0706.2023.09.004
WAN Mingzhong,WANG Yuanyuan,LI Jun,et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy,2023,45(9):26−31. doi: 10.3969/j.issn.2097-0706.2023.09.004
|
[22] |
CHEN C M. Searching for intellectual turning points:Progressive knowledge domain visualization[J]. Proceedings of the national academy of sciences of the united states of america,2004,101(1):5303−5310.
|
[23] |
HUANG L C,HOU Z M,FANG Y L,et al. The development,frontier and prospect of large-scale underground energy storage:A bibliometric review[J]. Journal of Energy Storage,2024,103:114293. doi: 10.1016/j.est.2024.114293
|
[24] |
WANG D L,LIU N N,CHEN F,et al. Progress and prospects of energy storage technology research:Based on multidimensional comparison[J]. Journal of Energy Storage,2024,75:109710. doi: 10.1016/j.est.2023.109710
|
[25] |
ZHU J J,LIU H,KONG J,et al. Exploring hydrogen storage safety research by bibliometric analysis[J]. International Journal of Hydrogen Energy,2024,81:27−39. doi: 10.1016/j.ijhydene.2024.07.285
|
[26] |
CHEN C. Mapping science[M]. Springer,2013.
|
[27] |
陈悦,刘则渊,陈劲,等. 科学知识图谱的发展历程[J]. 科学学研究,2008,26(3):449−460.
CHEN Yue,LIU Zeyuan,CHEN Jin,et al. History and theory of mapping knowledge domains[J]. Studies in Science of Science,2008,26(3):449−460.
|
[28] |
邱均平. 文献计量学[M]. 2版. 北京:科学出版社,2019.
|
[29] |
SAEIDNIA H R,HOSSEINI E,ABDOLI S,et al. Unleashing the power of AI:A systematic review of cutting-edge techniques in AI-enhanced scientometrics,webometrics and bibliometrics[J]. Library Hi Tech,2024,Vol. ahead-of-print No. ahead-of-print.
|
[30] |
胡泽文,孙建军,武夷山. 国内知识图谱应用研究综述[J]. 图书情报工作,2013,57(3):131−137,84.
HU Zewen,SUN Jianjun,WU Yishan. Research review on application of knowledge mapping in China[J]. Library and Information Service,2013,57(3):131−137,84.
|
[31] |
陈悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242−253. doi: 10.3969/j.issn.1003-2053.2015.02.009
CHEN Yue,CHEN Chaomei,LIU Zeyuan,et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science,2015,33(2):242−253. doi: 10.3969/j.issn.1003-2053.2015.02.009
|
[32] |
宋秀芳,迟培娟. Vosviewer与Citespace应用比较研究[J]. 情报科学,2016,34(7):108−112,146.
SONG Xiufang,CHI Peijuan. Comparative study of the data analysis results by vosviewer and citespace[J]. Information Science,2016,34(7):108−112,146.
|
[33] |
高凯. 文献计量分析软件VOSviewer的应用研究[J]. 科技情报开发与经济,2015(12):95−98.
GAO Kai. Research on the application of bibliometric analysis software VOSviewer[J]. Sci-Tech Information Development & Economy,2015(12):95−98.
|
[34] |
BARRIOS M,BORREGO A,VILAGINÉS A,et al. A bibliometric study of psychological research on tourism[J]. Scientometrics,2008,77(3):453−467. doi: 10.1007/s11192-007-1952-0
|
[35] |
张世铮. 新发展的压缩空气贮能发电技术[J]. 河海大学科技情报,1989,9(1):23−27.
|
[36] |
李杰,陈超美. CiteSpace:科技文本挖掘及可视化[M]. 3版. 北京:首都经济贸易大学出版社,2022.
|
[37] |
KLEINBERG J. Bursty and hierarchical structure in streams[C]//Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton,Alberta,Canada:Association for Computing Machinery,2002:91–101.
|
[38] |
CHEN C M. CiteSpace II:Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for information Science and Technology,2006,57(3):359−77. doi: 10.1002/asi.20317
|
[39] |
王国华,张学林,李智,等. 压缩空气储能盐穴储气库注采全过程热力学特性分析[J]. 可再生能源,2019,37(4):618−624.
WANG Guohua,ZHANG Xuelin,LI Zhi,et al. Thermodynamics analysis of salt cavern for compressed air energy storage system[J]. Renewable Energy Resources,2019,37(4):618−624.
|
[40] |
FAN J Y,JIANG D Y,LIU W,et al. Discontinuous fatigue of salt rock with low-stress intervals[J]. International Journal of Rock Mechanics and Mining Sciences,2019,115:77−86. doi: 10.1016/j.ijrmms.2019.01.013
|
[41] |
CHEN J,LIU W,JIANG D Y,et al. Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China[J]. Energy,2017,127:462−478. doi: 10.1016/j.energy.2017.03.088
|
[42] |
FAN J Y,LIU W,JIANG D,et al. Thermodynamic andapplicability analysis of a hybrid CAES system using abandoned coal mine in China[J]. Energy,2018,157:31−44. doi: 10.1016/j.energy.2018.05.107
|
[43] |
BAUER S,BEYER C,DETHLEFSEN F,et al. Impacts of the use of the geological subsurface for energy storage:An investigation concept[J]. Environmental Earth Sciences,2013,70(8):3935−3943. doi: 10.1007/s12665-013-2883-0
|
[44] |
ZHAO K,MA H L,YANG C H,et al. Damage evolution and deformation of rock salt under creep-fatigue loading[J]. Rock Mechanics and Rock Engineering,2021,54(4):1985−1997. doi: 10.1007/s00603-020-02342-6
|
[45] |
佘诗刚,董陇军. 从文献统计分析看中国岩石力学进展[J]. 岩石力学与工程学报,2013,32(3):442−464. doi: 10.3969/j.issn.1000-6915.2013.03.004
SHE Shigang,DONG Longjun. Statistics and analysis of academic publications for development of rock mechanics in China[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(3):442−464. doi: 10.3969/j.issn.1000-6915.2013.03.004
|
[46] |
KIM Y M,FAVRAT D. Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system[J]. Energy,2010,35(1):213−220. doi: 10.1016/j.energy.2009.09.011
|
[47] |
KIM Y M,SHIN D G,FAVRAT D. Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis[J]. Energy,2011,36(10):6220−6233. doi: 10.1016/j.energy.2011.07.040
|
[48] |
OLABI A G,WILBERFORCE T,RAMADAN M,et al. Compressed air energy storage systems:Components and operating parameters–A review[J]. Journal of Energy Storage,2021,34:102000. doi: 10.1016/j.est.2020.102000
|
[49] |
PICKARD W F,SHEN A Q,HANSING N J. Parking the power:Strategies and physical limitations for bulk energy storage in supply–demand matching on a grid whose input power is provided by intermittent sources[J]. Renewable and Sustainable Energy Reviews,2009,13(8):1934−1945. doi: 10.1016/j.rser.2009.03.002
|
[50] |
OZARSLAN A. Large-scale hydrogen energy storage in salt caverns[J]. International Journal of Hydrogen Energy,2012,37(19):14265−14277. doi: 10.1016/j.ijhydene.2012.07.111
|
[51] |
LIU J L,WANG J H. A comparative research of two adiabatic compressed air energy storage systems[J]. Energy Conversion and Management,2016,108:566−578. doi: 10.1016/j.enconman.2015.11.049
|
[52] |
GAO R B,WU F,CHEN J,et al. Study on creep characteristics and constitutive model of typical argillaceous salt rock in energy storage Caverns in China[J]. Journal of Energy Storage,2022,50:104248. doi: 10.1016/j.est.2022.104248
|
[53] |
PBerest,BBrouard,JGDurup. Tightness tests in salt-cavern wells[J]. Oil & Gas Science and Technology,2001,56(5):451−469.
|
[54] |
GHANBARZADEH S,HESSE M A,PRODANOVIĆ M,et al. Deformation-assisted fluid percolation in rock salt[J]. Science,2015,350(6264):1069−1072. doi: 10.1126/science.aac8747
|
[55] |
ALKAN H. Percolation model for dilatancy-induced permeability of the excavation damaged zone in rock salt[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(4):716−724. doi: 10.1016/j.ijrmms.2008.08.002
|
[56] |
FAN J Y,XIE H P,CHEN J,et al. Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs[J]. Applied Energy,2020,258:114007. doi: 10.1016/j.apenergy.2019.114007
|
[57] |
KOELEMEIJER P,PEACH C,SPIERS C. Surface diffusivity of cleaved NaCl crystals as a function of humidity:Impedance spectroscopy measurements and implications for crack healing in rock salt[J]. Journal of Geophysical Research:Solid Earth,2012,117(B1):B01205.
|
[58] |
LIANG X P,MA H L,CAI R,et al. Feasibility analysis of natural gas storage in the voids of sediment within salt cavern:A case study in China[J]. Energy,2023,285:129340. doi: 10.1016/j.energy.2023.129340
|
[59] |
LIU W,LI Q H,YANG C H,et al. The role of underground salt Caverns for large-scale energy storage:A review and prospects[J]. Energy Storage Materials,2023,63:103045. doi: 10.1016/j.ensm.2023.103045
|
[60] |
WAN M Z,JI W D,WAN J F,et al. Compressed air energy storage in salt Caverns in China:Development and outlook[J]. Advances in Geo-Energy Research,2023,9(1):54−67. doi: 10.46690/ager.2023.07.06
|
[61] |
WEI X X,LIU Y X,SHI X L,et al. Experimental research on brine crystallization mechanism in solution mining for salt cavern energy storage[J]. Journal of Energy Storage,2022,55:105863. doi: 10.1016/j.est.2022.105863
|
[62] |
杨春和,王同涛. 我国深地储能机遇、挑战与发展建议[J]. 科学通报,2023,68(36):4887−4894. doi: 10.1360/TB-2023-0841
YANG Chunhe,WANG Tongtao. Opportunities,challenges,and development suggestions for deep underground energy storage in China[J]. Chinese Science Bulletin,2023,68(36):4887−4894. doi: 10.1360/TB-2023-0841
|
[63] |
WEI X X,BAN S N,SHI X L,et al. Carbon and energy storage in salt caverns under the background of carbon neutralization in China[J]. Energy,2023,272:127120. doi: 10.1016/j.energy.2023.127120
|
[64] |
ZHAO K,MA H L,ZHOU J,et al. Rock salt under cyclic loading with high-stress intervals[J]. Rock Mechanics and Rock Engineering,2022,55(7):4031−4049. doi: 10.1007/s00603-022-02848-1
|
[65] |
LIU W,CHEN J,JIANG D Y,et al. Tightness and suitability evaluation of abandoned salt Caverns served as hydrocarbon energies storage under adverse geological conditions (AGC)[J]. Applied Energy,2016,178:703−720. doi: 10.1016/j.apenergy.2016.06.086
|
[66] |
WAN M Z,JI W D,SHANG H L,et al. Key problems and techniques of geophysical exploration in underground salt cavern for compressed air energy storage[J]. Southern Energy Construction,2023,10(2):26−31.
|
[67] |
LIU W,ZHANG Z X,FAN J Y,et al. Research on gas leakage and collapse in the cavern roof of underground natural gas storage in thinly bedded salt rocks[J]. Journal of Energy Storage,2020,31:101669. doi: 10.1016/j.est.2020.101669
|
[68] |
LIU X,SHI X L,LI Y P,et al. Maximum gas production rate for salt cavern gas storages[J]. Energy,2021,234:121211. doi: 10.1016/j.energy.2021.121211
|
[69] |
YUAN G J,WAN J F,LI J C,et al. Stability analysis of a typical two-well-horizontal saddle-shaped salt cavern[J]. Journal of Energy Storage,2021,40:102763. doi: 10.1016/j.est.2021.102763
|
[70] |
ZHOU S W,XIA C,ZHAO H B,et al. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage[J]. Journal of Geophysics and Engineering,2017,14(6):1382−1398. doi: 10.1088/1742-2140/aa7bd9
|
[71] |
WU F,GAO R B,LI C B,et al. A comprehensive evaluation of wind-PV-salt cavern-hydrogen energy storage and utilization system:A case study in Qianjiang salt cavern,China[J]. Energy Conversion and Management,2023,277:116633. doi: 10.1016/j.enconman.2022.116633
|
[72] |
GE X B,HUANG J,ZHOU K,et al. Research of interlayer dip angle effect on stability of salt cavern energy and carbon storages in bedded salt rock[J]. Geoenergy Science and Engineering,2024,243:213291. doi: 10.1016/j.geoen.2024.213291
|
[73] |
WANG X P,WANG J B,ZHANG Q,et al. Long-term stability analysis and evaluation of salt cavern compressed air energy storage power plant under creep-fatigue interaction[J]. Journal of Energy Storage,2022,55:105843. doi: 10.1016/j.est.2022.105843
|
[74] |
PARK B,EHGARTNER B,HERRICK C G. Numerical expansion analyses of the strategic petroleum reserve in bayou choctaw salt dome USA[R]. Sandia National Lab. (SNL-NM),Albuquerque,NM (United States); Sandia National Laboratories,Carlsbad,NM,2009.
|
[75] |
LIU W,DU J W,LI Q H,et al. Feasibility analysis on the utilization of TWH-caverns with sediment space for gas storage:A case study of Sanshui salt mine[J]. Journal of Energy Storage,2024,75:109576. doi: 10.1016/j.est.2023.109576
|
[76] |
BAN F,YUAN G,WAN J,et al. The optimum interwell distance analysis of two-well-horizontal salt cavern construction[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2021,43(23):3082−3100.
|
[77] |
WANG T T,YANG C H,MA H L,et al. Safety evaluation of gas storage Caverns located close to a tectonic fault[J]. Journal of Natural Gas Science and Engineering,2015,23:281−293. doi: 10.1016/j.jngse.2015.02.005
|
[78] |
ZHU H Y,WANG S,ZHANG M,et al. Cyclic injection-production simulation of salt cavern gas storages:A case study of X1 and X2 salt caverns of JT gas storage[J]. Acta Petrolei Sinica,2021,42(3):367.
|
[79] |
HUANG J,GE X B,MA H L,et al. A study on thermodynamic coupling in dynamic injection and production processes of compressed air energy storage[J]. Energy,2025,319:135093. doi: 10.1016/j.energy.2025.135093
|
[80] |
BAI M X,SONG K P,SUN Y X,et al. An overview of hydrogen underground storage technology and prospects in China[J]. Journal of Petroleum Science and Engineering,2014,124:132−136. doi: 10.1016/j.petrol.2014.09.037
|
[81] |
杜冬梅,段树洋,蒋志容,等. 压缩空气储能系统地下人工硐室技术及其评价技术研究[J]. 热力发电,2024,53(10):1−10.
DU Dongmei,DUAN Shuyang,JIANG Zhirong,et al. Underground artificial chamber technology and its evaluation technology of compressed air energy storage system[J]. Thermal Power Generation,2024,53(10):1−10.
|
[82] |
ZHANG N,JIA Q J,LAI X P,et al. Analysis of the mechanical and leakage characteristics of surrounding rock in sandstone compressed air storage caverns after lining cracks[J]. Construction and Building Materials,2025,474:141086. doi: 10.1016/j.conbuildmat.2025.141086
|
[83] |
BUDT M,WOLF D,SPAN R,et al. A review on compressed air energy storage:Basic principles,past milestones and recent developments[J]. Applied Energy,2016,170:250−268. doi: 10.1016/j.apenergy.2016.02.108
|
[84] |
ALLEN R D,DOHERTY T J,FOSSUM A F. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns[R]. United States:Pacific Northwest National Lab. (PNNL),Richland,WA (United States),1982.
|
[85] |
蒋中明,刘澧源,李双龙,等. 压气储能平江试验库受力特性数值研究[J]. 长沙理工大学学报(自然科学版),2017,14(4):62−68. doi: 10.3969/j.issn.1672-9331.2017.04.010
JIANG Zhongming,LIU Liyuan,LI Shuanglong,et al. Numerical study on mechanical characteristics of the Pingjiang pilot cavern for compressed air energy storage[J]. Journal of Changsha University of Science & Technology (Natural Science),2017,14(4):62−68. doi: 10.3969/j.issn.1672-9331.2017.04.010
|
[86] |
周瑜,夏才初,赵海斌,等. 压气储能内衬洞室的空气泄漏率及围岩力学响应估算方法[J]. 岩石力学与工程学报,2017,36(2):297−309.
ZHOU Yu,XIA Caichu,ZHAO Haibin,et al. A method for estimating air leakage through inner seals and mechanical responses of the surrounding rock of lined rock Caverns for compressed air energy storage[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):297−309.
|
[87] |
蒋中明,李鹏,赵海斌,等. 压气储能浅埋地下储气库性能试验研究[J]. 岩土力学,2020,41(1):235−241,252.
JIANG Zhongming,LI Peng,ZHAO Haibin,et al. Experimental study on performance of shallow rock cavern for compressed air energy storage[J]. Rock and Soil Mechanics,2020,41(1):235−241,252.
|
[88] |
蒋中明,唐栋,李鹏,等. 压气储能地下储气库选型选址研究[J]. 南方能源建设,2019,6(3):6−16.
JIANG Zhongming,TANG Dong,LI Peng,et al. Research on selection method for the types and sites of underground repository for compressed air storage[J]. Southern Energy Construction,2019,6(3):6−16.
|
[89] |
SALTER M G,MACFARLANE I M,WILLETT D C,et al. 5 Design aspects for an underground compressed air energy storage system in hard rock[C]//Design and Performance of Underground Excavations:ISRM Symposium—Cambridge,UK. London:Thomas Telford Publishing,1984:37–44.
|
[90] |
中山昭彦,山地宏志. Thermodynamic analysis of efficiency and safety of underground air energy storage system[J]. 神戸大学都市安全研究センター研究報告,1999,3:247−254.
|
[91] |
GLAMHEDEN R,CURTIS P. Excavation of a cavern for high-pressure storage of natural gas[J]. Tunnelling and Underground Space Technology,2006,21(1):56−67. doi: 10.1016/j.tust.2005.06.002
|
[92] |
GEISSBÜHLER L,BECATTINI V,ZANGANEH G,et al. Pilot-scale demonstration of advanced adiabatic compressed air energy storage,Part 1:Plant description and tests with sensible thermal-energy storage[J]. Journal of Energy Storage,2018,17:129−139. doi: 10.1016/j.est.2018.02.004
|
[93] |
KIM H M,RUTQVIST J,KIM H,et al. Failure monitoring and leakage detection for underground storage of compressed air energy in lined rock Caverns[J]. Rock Mechanics and Rock Engineering,2016,49(2):573−584. doi: 10.1007/s00603-015-0761-7
|
[94] |
RUTQVIST J,KIM H M,RYU D W,et al. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock Caverns[J]. International Journal of Rock Mechanics and Mining Sciences,2012,52:71−81. doi: 10.1016/j.ijrmms.2012.02.010
|
[95] |
ZIMMELS Y,KIRZHNER F,KRASOVITSKI B. Design criteria for compressed air storage in hard rock[J]. Energy & Environment,2002,13(6):851−872.
|
[96] |
蒋中明,廖峻慧,肖喆臻,等. 压缩空气储能地下储气库热力学改进模型研究[J]. 长沙理工大学学报(自然科学版),2024,21(2):32−41.
JIANG Zhongming,LIAO Junhui,XIAO Zhezhen,et al. Study on improved model for the thermodynamics of compressed air energy storage underground cavern[J]. Journal of Changsha University of Science & Technology (Natural Science),2024,21(2):32−41.
|
[97] |
夏才初,秦世康,赵海鸥,等. 循环热力作用下压气储能洞室钢衬的疲劳耐久性[J]. 同济大学学报(自然科学版),2023,51(10):1564−1573.
XIA Caichu,QIN Shikang,ZHAO Haiou,et al. Fatigue durability of steel lining in compressed air energy storage Caverns under cyclic thermo-mechanical effects[J]. Journal of Tongji University (Natural Science),2023,51(10):1564−1573.
|
[98] |
WAN F,JIANG Z M,TIAN X,et al. A thermo-hydro-mechanical damage model for lined rock cavern for compressed air energy storage[J]. Journal of Energy Storage,2024,78:110186. doi: 10.1016/j.est.2023.110186
|
[99] |
KIM H M,RUTQVIST J,RYU D W,et al. Exploring the concept of compressed air energy storage (CAES) in lined rock Caverns at shallow depth:A modeling study of air tightness and energy balance[J]. Applied Energy,2012,92:653−667. doi: 10.1016/j.apenergy.2011.07.013
|
[100] |
LUTYŃSKI M. An overview of potential benefits and limitations of Compressed Air Energy Storage in abandoned coal mines[J]. IOP Conference Series:Materials Science and Engineering,2017,268:012006. doi: 10.1088/1757-899X/268/1/012006
|
[101] |
QIN C,LOTH E. Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines[J]. Applied Energy,2021,292:116867. doi: 10.1016/j.apenergy.2021.116867
|
[102] |
MUHAMMED N S,HAQ B,AL SHEHRI D,et al. A review on underground hydrogen storage:Insight into geological sites,influencing factors and future outlook[J]. Energy Reports,2022,8:461−499.
|
[103] |
杜俊生,陈结,姜德义,等. 中国废弃煤矿压气蓄能潜力与初步可行性研究[J]. 工程科学与技术,2023,55(1):253−264.
DU Junsheng,CHEN Jie,JIANG Deyi,et al. Study on the potential and pre-feasibility of compressed air energy storage of abandoned coal mines in China[J]. Advanced Engineering Sciences,2023,55(1):253−264.
|
[104] |
CHEN X H,WANG J G. Stability analysis for compressed air energy storage cavern with initial excavation damage zone in an abandoned mining tunnel[J]. Journal of Energy Storage,2022,45:103725. doi: 10.1016/j.est.2021.103725
|
[105] |
何涛,王传礼,高博,等. 废弃矿井抽水蓄能电站基础建设装备关键问题及对策[J]. 科技导报,2021,39(13):59−65.
HE Tao,WANG Chuanli,GAO Bo,et al. Key problems and countermeasures for infrastructure equipment of abandoned mine pumped storage power station[J]. Science and Technology Review,2021,39(13):59−65.
|
[106] |
BETZ M R,PARTRIDGE M D,FARREN M,et al. Coal mining,economic development,and the natural resources curse[J]. Energy Economics,2015,50:105−116. doi: 10.1016/j.eneco.2015.04.005
|
[107] |
常春勤,邹友峰. 国内外废弃矿井资源化开发模式述评[J]. 资源开发与市场,2014,30(4):425−429. doi: 10.3969/j.issn.1005-8141.2014.04.012
CHANG Chunqin,ZOU Youfeng. Review on resource development mode of abandoned underground space of mine[J]. Resource Development & Market,2014,30(4):425−429. doi: 10.3969/j.issn.1005-8141.2014.04.012
|
[108] |
ISHIHATA T. Underground compressed air storage facility for CAES-G/T power plant utilizing an airtight lining[J]. News J Int Soc Rock Mech,1997,5(1):17−21.
|
[109] |
郭平业,王蒙,孙晓明,等. 废弃矿井地下空间反季节循环储能研究[J]. 煤炭学报,2022,47(6):2193−2206.
GUO Pingye,WANG Meng,SUN Xiaoming,et al. Study on off-season cyclic energy storage in underground space of abandoned mine[J]. Journal of China Coal Society,2022,47(6):2193−2206.
|
[110] |
马洪岭,梁孝鹏,赵凯,等. 山东泰安盐穴储气库地质可行性分析[J]. 隧道与地下工程灾害防治,2022,4(2):19−27.
MA Hongling,LIANG Xiaopeng,ZHAO Kai,et al. Geological feasibility analysis of Tai’an salt cavern gas storage in Shandong Province[J]. Hazard Control in Tunnelling and Underground Engineering,2022,4(2):19−27.
|
[111] |
WU D,WANG J G,HU B W,et al. A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern[J]. Renewable Energy,2020,146:907−920. doi: 10.1016/j.renene.2019.07.034
|
[112] |
SCHMIDT F,MENÉNDEZ J,KONIETZKY H,et al. Converting closed mines into giant batteries:Effects of cyclic loading on the geomechanical performance of underground compressed air energy storage systems[J]. Journal of Energy Storage,2020,32:101882. doi: 10.1016/j.est.2020.101882
|
[113] |
XU Y J,ZHOU S W,XIA C C,et al. Three-dimensional thermo-mechanical analysis of abandoned mine drifts for underground compressed air energy storage:A comparative study of two construction and plugging schemes[J]. Journal of Energy Storage,2021,39:102696. doi: 10.1016/j.est.2021.102696
|
[114] |
袁亮,姜耀东,王凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20.
YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.
|
[115] |
霍冉,徐向阳,姜耀东. 国外废弃矿井可再生能源开发利用现状及展望[J]. 煤炭科学技术,2019,47(10):267−273.
HUO Ran,XU Xiangyang,JIANG Yaodong. Status and prospect on development and utilization of renewable energy in abandoned mines abroad[J]. Coal Science and Technology,2019,47(10):267−273.
|
[116] |
安丽珍. 储能技术:可再生能源发展的关键[J]. 太阳能,2011(8):6−9,27.
AN Lizhen. Energy storage technology,critical in development of renewable energy utilization[J]. Solar Energy,2011(8):6−9,27.
|
[117] |
韦媚媚,项定先. 储能技术应用与发展趋势[J]. 工业安全与环保,2023,49(S1):4−12.
WEI Meimei,XIANG Dingxian. Application and development trend of energy storage[J]. Industrial Safety and Environmental Protection,2023,49(S1):4−12.
|
[118] |
清华大学产业发展与环境治理研究中心. 中国新兴能源产业的创新支撑体系及政策研究报告(2013) [R/OL]. https://www.efchina.org/Reports-zh/reports-20130630-zh.
|
[119] |
教育部 国家发展改革委 国家能源局关于印发《储能技术专业学科发展行动计划(2020—2024年)》的通知[J]. 中华人民共和国教育部公报,2020(S1):55−58.
|
[120] |
国家能源局,科技部. 关于印发《“十四五”能源领域科技创新规划》的通知〔国能发科技〔2021〕58号〕[EB/OL]. https://www.gov.cn/zhengce/zhengceku/2022-04/03/content_5683361.htm.
|
[121] |
科技部,国家发展改革委,工业和信息化部,等. 科技部等九部门关于印发《科技支撑碳达峰碳中和实施方案(2022—2030年)》的通知〔国科发社〔2022〕157号〕[EB/OL]. 北京:科技部网站. https://www.gov.cn/zhengce/zhengceku/2022-08/18/content_5705865.htm.
|